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1. INTRODUCTION
Statistical description of turbulent advection of a

passive scalar quantity 

 

ϑ

 

 is a classical problem in tur-
bulence theory. Examples of scalar field include devia-
tions of tracer concentration and temperature from their
mean values. A scalar is passive when the effect of the
scalar field evolution on the flow is negligible. With
regard to the aforementioned examples, this means that
the variations of flow velocity due to tracer concentra-
tion fluctuations or thermal expansion can be ignored.
This paper presents an analysis of the decay problem in
which an initial scalar distribution is given and statisti-
cal characteristics of the time-varying scalar field are to
be determined.

In this study, two- and three-dimensional turbulent
flows are considered (

 

d

 

 = 2, 3). A well-developed three-
dimensional turbulent flow at a Reynolds number

 

Re

 

 

 

�

 

 1 is briefly described as follows (e.g., see [1, 2]).
Energy is injected into the fluid through eddies of
approximate size 

 

L

 

 generated by external forcing at a
rate of 

 

�

 

v

 

 per unit mass. The fluid viscosity is negligible
on length scales much larger than the viscous length

where 

 

ν

 

 is kinematic viscosity. In the inertial range 

 

η

 

 

 

�

 

r

 

 

 

�

 

 

 

L

 

, kinetic energy is transferred from larger to
smaller eddies via a steady cascade process. The corre-
sponding mean velocity difference between fluid ele-
ments separated by a distance 

 

r

 

 was estimated by Kol-
mogorov [3] as

The cascade process transfers energy to the smallest
eddies of size on the order of 

 

η

 

. On the scale of 

 

η

 

, vis-
cosity is essential and kinetic energy dissipates into

η = ν3/�v( )1/4
,

δv r( ) �vr( )1/3.≈

 

heat. Intermittency corrections to Kolmogorov’s esti-
mate [4] can be neglected in an approximate analysis.

Two-dimensional turbulence [5–7] is different from
three-dimensional turbulence in that both kinetic
energy and enstrophy are conserved in inviscid flow.
The latter quantity is defined as

where 

 

ω

 

 = curl

 

v

 

 is vorticity. Accordingly, well-devel-
oped two-dimensional turbulence involves a downscale
enstrophy cascade and an upscale kinetic-energy cas-
cade, both starting from the forcing scale. The enstro-
phy cascade extends down to the viscous scale

where 

 

V

 

 is the flow velocity on the forcing scale 

 

L

 

. The
energy cascade is cut off on a large scale when wall or
bottom friction becomes sufficiently strong.

The present analysis is focused on the advection of
a passive scalar quantity 

 

ϑ

 

 by turbulent flow on scales
smaller than the viscous length 

 

η

 

. Over such distances,
the mean velocity difference is 

 

δ

 

v

 

(

 

r

 

) 

 

∝

 

 

 

r

 

, which corre-
sponds to the Batchelor flow regime [8]. In the Batche-
lor flow, the Lagrangian trajectories of fluid particles
diverge exponentially. The Lyapunov exponent 

 

λ

 

defined as the mean logarithmic rate of divergence of
Lagrangian trajectories determines the mean velocity
gradient. In this study, the velocity field is assumed to
be statistically isotropic in accordance with the stan-
dard treatment of turbulent flow as statistically isotro-
pic on scales much smaller than the forcing scale even
if the forcing is not isotropic.

Tracer (or heat) diffusion is assumed to be slow; i.e.,
the corresponding Prandtl or Schmidt number is large
(

 

Pr

 

 and 

 

Sc

 

 are defined as the ratios of 

 

ν

 

 to the tracer and

Ω d2rω2,∫=

η = νL/V  � L,
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heat diffusivity, respectively). Here, both diffusivities
are denoted by 

 

κ

 

; i.e., 

 

ν

 

/

 

κ

 

 is a large parameter. The non-
uniformities of the scalar field advected by turbulent
flow are smoothed out by diffusion over lengths smaller
than the diffusive scale 

 

r

 

d

 

. Since the Prandtl (or
Schmidt) number is large, we have

Similarly, the viscous scale is

i.e., 

 

r

 

d

 

 

 

�

 

 

 

η

 

.
The Batchelor regime with random velocity field

can also be considered as a model of the so-called elas-
tic turbulence [9]. Elastic turbulence develops in poly-
mer solutions when the Reynolds number is low
(

 

Re

 

 

 

�

 

 1) and 

 

Wi 

 

~ 1, where the Weissenberg number is
defined as the ratio of the inverse polymer relaxation
time 

 

µ 

 

to the characteristic velocity gradient:

for a reference velocity 

 

V

 

 and a flow domain of charac-
teristic size 

 

L

 

0

 

. In elastic turbulence the dominant con-
tribution to velocity gradient corresponds to eddies of
size on the order of 

 

L

 

0

 

. Therefore, the approximation

 

δ

 

v

 

(

 

r

 

) 

 

∝

 

 

 

r

 

 is valid on the largest scales, and the flow
Lyapunov exponent is estimated as

The velocity field is assumed to be statistically isotro-
pic on the scale 

 

L

 

0

 

. Since scalar diffusion in elastic tur-
bulence is also assumed to be weak, the diffusive scale,

 

r

 

d

 

, is much smaller than 

 

L

 

0

 

. If the Reynolds number is
defined as

then

Thus, 

 

r

 

d

 

 

 

�

 

 

 

L

 

0

 

 if

The initial scalar distribution 

 

ϑ

 

0

 

(

 

r

 

) is assumed to be
statistically homogeneous and isotropic, while the size

 

l 

 

of nonuniformities of 

 

ϑ

 

0

 

 is such that 

 

r

 

d

 

 

 

�

 

 

 

l

 

 

 

�

 

 

 

η

 

. For
elastic turbulence, it is assumed that 

 

r

 

d

 

 

 

�

 

 l � L0.
The significant progress made in recent theoretical

studies of passive-scalar advection by random velocity
fields was mainly achieved by using Kraichnan’s model
[10], in which the velocity field is treated as delta-cor-
related in time and smooth in space. Subsequently, this
model was extended to fields characterized by the so-
called multiscaling behavior. One of the first analyses
of this kind was presented in [11], where the evolution
of weak magnetic field in turbulent flow was consid-
ered. In Kraichnan’s model, closed equations can be

rd ~ κ/λ.

η ~ ν/λ,

Wi µL0/V ,=

λ ~ V /L0.

Re L0V /ν,=

rd/L0 κ/Reν.∼

Pr ν/κ � Re 1– .=

obtained for equal-time passive-scalar correlation func-
tions. Since many correlation functions depend only on
the integral characteristics of velocity field, the qualita-
tive results obtained by using Kraichnan’s model can be
extended to velocity fields with finite correlation times.
The current status of the theory of passive-scalar advec-
tion was reviewed in [12].

Theoretical analyses of the decay problem for
Batchelor-regime turbulence were presented in [13–
15]. In [13], Kraichnan’s model was employed to exam-
ine the passive-scalar pair correlation function F(r) in
the case when there are two regions of asymptotic
behavior of the velocity pair correlation function. For
scales smaller than the viscous length, it was assumed
that δv(r) ∝ r, while

for larger scales. According to [13], the corresponding
passive-scalar correlation length is an exponentially
increasing function of time:

As it exceeds the viscous length, the function changes
to a power law:

Thereafter, the characteristic scale of fluctuations lies in
the inertial range. These fluctuations drive a subvis-
cous-range cascade flux down to the diffusive scale rd.
Accordingly, the spectral density varies as

over the wavenumber interval

.

Similar behavior of the spectral density is obtained
when new passive-scalar fluctuations are permanently
created on large scales [8, 10, 16]. In [14], high-order
scalar correlation functions were analyzed in the limit
of η  0. An initial stage of decay was considered in
[15], where the single-point statistical characteristics of
the scalar field were studied for an arbitrary finite-time
correlated velocity field.

The initial stage at which the scalar correlation
length has not reached the viscous scale η, can be qual-
itatively characterized as follows [13, 15]. The evolu-
tion of the scalar field is described by assuming that any
initial scalar distribution with a fluctuation length scale l
can be represented by a superposition of blobs of size l.
A blob of size l means an initial distribution ϑ0 that
does not vanish only within a region of size l. When the
velocity field has a nonzero gradient, the blob expands
and contracts along mutually orthogonal directions
exponentially in time. Diffusion counterbalances con-
traction as the blob size reduces to r ~ rd in the contract-
ing direction, whereas the blob size in the expanding
direction is not affected by diffusion. After the smallest

δv r( )( )2〈 〉 r2 γ–∝

r+ leλt.∝

r+ t1/γ
 � η.∝

kd 1– F k( ) 1/k∝

η 1–
 � k � rd

1–
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blob size has reduced to rd, its volume increases, while
the mean value of the scalar inside the blob decreases.
A statistically homogeneous and isotropic initial scalar
distribution can be represented as a superposition of
many blobs chaotically dispersed in space. Since blobs
separated by a distance much smaller than η are
strained by the same velocity gradient, they are simi-
larly oriented in space, and their shapes vary in a simi-
lar manner. Thus, the local scalar distribution becomes
highly anisotropic. As the smallest blob size reduces to
rd, blobs tend to overlap, while the fluctuation intensity
decreases with time elapsed. At the same time, there
remain flow regions where the local tracer concentra-
tion substantially deviates from its mean value. In these
regions, local velocity gradients are much weaker than
the volume-averaged velocity gradient. The relative
volume of these regions is small, because the probabil-
ity of such velocity fluctuations is low.

In [15], single-point moments of a scalar field were
calculated by finding the optimal velocity fluctuation
intensity for which the scalar fluctuation intensity and
the statistical weight of velocity fluctuations are equally
important. The optimal fluctuation intensity turned out
to be different for moments of different orders, which
implies strong intermittency of the scalar field. In this
study, the same initial stage of scalar decay is analyzed
by a similar method, but equal-time correlation func-
tions are considered. It is demonstrated that the pair
correlation functions calculated in [13] for a delta-cor-
related velocity field remain qualitatively correct for a
velocity field arbitrarily correlated in time. Since
knowledge of the pair correlation function is not suffi-
cient for characterizing the scalar distribution in space,
higher order correlation functions are also analyzed. As
a result, correlation functions are determined for an
arbitrary finite-time correlated velocity field. Higher
order correlation functions are shown to exhibit scaling
behavior analogous to that of the pair correlation func-
tion considered in [13]. In accordance with the general
tendency of the blob toward contraction and expansion,
higher order correlation functions are found to have
angular singularities. The existence of such singulari-
ties is independent of specific statistical characteristics
of the velocity field. However, the power exponents of
the angular singularities depend on the statistical char-
acteristics of the velocity field.

2. STATEMENT OF THE PROBLEM
Evolution of a passive scalar quantity ϑ in a moving

fluid is described by the advection-diffusion equation

(1)

If the scalar is a tracer concentration, then Eq. (1) cor-
responds to the limit case of massless tracer particles.
The assumption that the scalar is passive means that the
flow velocity v is not influenced by the dynamics of the
ϑ field. Accordingly, the velocity and scalar fields are
statistically independent.

∂tϑ v ∇⋅( )ϑ+ κ∆ϑ.=

The ratio of kinematic viscosity ν to scalar diffusiv-
ity κ is assumed to be large. If the scalar is a tracer con-
centration, then the ratio is the Prandlt number Pr. If the
scalar quantity is temperature, then κ is heat diffusivity
and ν/κ is the Schmidt number. In the present analysis,
these parameters are equivalent. By convention,

The diffusive scale rd is defined as the length scale on
which the advection and diffusion terms in Eq. (1) are
comparable:

(2)

Here, λ is the Lyapunov exponent defined as the mean
logarithmic rate of divergence of two initially close
Lagrangian trajectories: if r(t) is the distance between
Lagrangian particles, then

On scales much larger than rd, the right-hand side of
Eq. (1) can be neglected and an advection equation is
obtained. On scales smaller than the diffusive scale, dif-
fusion plays the dominant role, smoothing out nonuni-
formities in the scalar distribution. For a turbulent flow

characterized by the viscous scale η ~ , the con-
dition Pr � 1 implies that η � rd.

For elastic turbulence, Re � 1. If the characteristic
size of the flow domain and the corresponding charac-
teristic velocity are denoted by L0 and V, respectively,
then

Since the dominant contribution to velocity gradient
corresponds to eddies of size on the order of L0, the
Lyapunov exponent is

Assuming that rd � L0, we have

Pr � Re–1.

The characteristic size l of nonuniformities in the
initial scalar distribution ϑ0(r) is assumed to be such
that η � l � rd, which implies that the Peclet number is

Pe = l/rd � 1.

The distribution of ϑ0 is supposed to be statistically
homogeneous and isotropic, with a pair correlation
function

rapidly decreasing with increasing r for distances
smaller than r ≈ l.

ν/κ Pr � 1.=

rd 2κ/λ.=

λ d rln
dt

----------- .=

ν/λ

Re L0V /ν.=

λ ~ Re/νL0
2.

F0 R( ) ϑ0 0( )ϑ0 R( )〈 〉=
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The distribution ϑ0 can be represented as a superpo-
sition of N scalar blobs of size l chaotically dispersed in
space:

(3)

The initial scalar distribution in a blob is described by a
spherically symmetric function Θ0(|r'|/l) decreasing for
distances smaller than l. To be specific, we assume that

where d is the space dimension. The vectors ri define
randomly distributed locations of the blobs, and the
random weighting factors ai characterize scalar fluctu-
ation amplitudes. If the flow domain is uniformly filled
with blobs, then the concentration of blobs is

where � is the volume of the flow domain. The average
distance between blobs is

where d = 2 or 3.
Two limit cases of ϑ0 distribution are considered

here. The limit distribution denoted by  describes
strongly overlapping blobs (D � l). In this case, the sca-
lar field can be treated as Gaussian. The volume aver-
age of the scalar is eliminated from analysis by assum-

ing that the Corrsin invariant ϑg is zero, which

implies that

Averaging (3) over the random locations ri yields the
pair correlation function

(4)

where

(5)

This result is obtained in the limit of �  ∞. The con-
dition D � l ensures that the scalar field is Gaussian; in
particular,

ϑ0 r( ) aiΘ0 r ri– /l( ).
i 1=

N

∑=

r 'Θ0 r '/l( )d ld,=∫

D d– N /�,=

D �/N( )1/d
,=

ϑ0
g

rd∫

ai

i

∑ 0.=

F0 R( ) 1
�
----- l2d

�
------– r 'Θ R r '+ /l( )Θ r '/l( )d∫+=

× ai
2

i

∑ C2
dr '

ld
-------Θ0 r ' R/2+( )Θ0 r ' R/2–( ),∫=

C2
l/D( )d

N
--------------- ai

2.
i

∑=

ϑ0
4〈 〉

6 ϑ0
2〈 〉2

---------------- 1 D/l( )3
 � 1.∝–

It is shown in Section 6 that the passive scalar correla-
tion functions are proportional to the correlation func-
tions of a Gaussian field in the long-time limit if D ∼ l.

The distribution denoted by  corresponds to the
opposite limit, D � l. It is assumed that ai > 0; i.e., the

scalar has the same sign in all blobs. In the case of ,
statistically adequate results are obtained only when all
points in the correlation function lie within the same
blob, and averaging over ri is required. In particular, the
pair correlation function is given by expression (4), and
single-point moments are calculated as follows:

(6)

where

Statistical characteristics of the scalar field advected
by the flow at later times can be described in terms of
the equal-time correlation functions defined as

(7)

where angle brackets denote volume averaging,

Since � � ηd, the averaging in (7) on scales much
smaller than η is equivalent to separate averaging over
the initial scalar distribution and velocity-gradient sta-
tistics.

For elastic turbulence, the averaging in (7) should be
interpreted somewhat differently. For example, the
average in (7) corresponding to the experimental pipe
flow examined in [9] is obtained by averaging over the
pipe cross section combined with time averaging, the
latter being equivalent to averaging over the velocity-
gradient distribution for Newtonian turbulence.

3. FLUID MOTION

Consider the flow in a frame of reference moving
with a fluid particle on length scales smaller than η (for
Newtonian turbulence) or L0 (for elastic turbulence).
Since the Lagrangian velocity field is smooth on these

ϑ0
p

ϑ0
p

ϑ0
p( )n〈 〉 Cn

r 'd

ld
-------Θ0

n r '/l( )∫=

≈ ld

Dd
------

ai

i

∑
N

-----------Θ0 0( )

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

n

,

Cn
l/D( )d

N
--------------- ai

n.
i

∑=

�n r j{ } t,( ) ϑ r j t,( )
j 1=

n

∏ ,=

�n r j{ } t,( ) 1
�
----- r ϑ r ri+( ).

i

∏d∫=
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scales, it can be described in terms of the velocity-gra-
dient tensor  defined by the relation

(8)

Assuming that the flow is incompressible, we have

The random process  has a finite correlation time
in both Newtonian and elastic turbulence. However, the
statistical characteristics of  are not known. For a
well-developed turbulent flow, the correlation time is
comparable to the turnover time of the smallest eddies
(of size on the order of η). It is assumed here that the
distribution of  is statistically isotropic. These
assumptions are sufficient for estimating some charac-
teristics of the flow and the advected scalar.

The Lagrangian trajectory r(t) of a fluid particle can
be represented in terms of a linear transformation:

(9)

Approximation (9) is accurate only for r � η (for New-
tonian turbulence) or r � L0 (for elastic turbulence).
Thus, the deformation of a fluid particle is described by

the affine transformation . For incompressible flows,

The motion of a fluid element is decomposed into
expansion and rigid-body rotation by representing the
linear transformation as

(10)

where  and  are orthogonal matrices and  is a
diagonal one.

Define

The equations for ρi derived by combining (9) with (10)
have the form

(11)

If det  = 1, then

To derive equations for the orthogonal matrices in (10),
define the rotation velocities

σ̂

v σ̂r.=

trσ̂ 0.=

σ̂

σ̂

σ̂

r t( ) Ŵ t( )r 0( ),
dŴ
dt

-------- σ̂Ŵ .= =

Ŵ

detŴ 1.=

Ŵ N̂ D̂�̂,=

N̂ �̂ D̂

ρi Dii, iln 1 … d ., ,= =

ρ̇i σii, σ̂ N̂
Tσ̂N̂ .= =

Ŵ

ρi

i

∑ 0.=

Ωn N̂
T∂t N̂ , Ωo ∂t�̂�̂

T
.= =

It holds that

(12)

In the limit regime reached over a relatively short time
t � λ–1, the fluid-element size changes differently along
different eigendirections of the expansion tensor. To be
specific, assume that

In this limit, it follows from (12) that the statistical

characteristics of  are independent of ρi. The expan-
sion and contraction Lyapunov exponents defined as

(13)

are on the order of the inverse correlation time of the
process . For incompressible flows,

Hereinafter, it is assumed that

The mean logarithmic rate of divergence of initially
close Lagrangian trajectories defined above is λ = λ1.
On a time scale much larger than the correlation time of
the process , it follows from (11) that ρi is the sum of
a large number (proportional to λt) of similarly distrib-
uted independent random variables. Therefore, the
probability of deviation of the growth rate of ρi from its
mean value given by (13) is described by the distribu-
tion function

(14)

where C is a normalization constant and S is the so-
called Cramer function (e.g., see [17]). The relative cor-
rections to (14) are on the order of 1/λt. The Cramer
function S is convex and has a minimum at the origin.
It can be calculated exactly in Kraichnan’s model with
delta-correlated velocity field (see Appendix). For real
turbulent flows, the function S cannot be found since
the statistical characteristics of  are not known. It is
assumed here that the second derivative of S is on the
order of λ–1, because it is the only time scale of turbu-
lent flow in the viscous range. The factor t–1 in (14) is
of no importance for the analysis of the exponential
behavior of correlation functions presented below.

In Kraichnan’s model, λ2 = 0. The value of λ2 for
well-developed turbulence governed by the Navier–
Stokes equations can be found only by numerical sim-
ulation. For example, λ2 ≈ 0.2λ1 was obtained in [18],

Ωij
n σij ρ j ρi–( )exp σ ji ρi ρ j–( )exp+

2 ρ j ρi–( )sinh
-------------------------------------------------------------------------------,=

Ωij
o σij σ ji+

2 ρi ρ j–( )sinh
----------------------------------.=

e
ρ1 � … � e

ρd.

σ̂

λi σii〈 〉=

σ̂

λi

i

∑ 0.=

λ1 … λd.> >

σ

� ρ2 ρ3,( ) C
t
---- tS x2 x3,( )–[ ], xiexp≈

ρi

t
---- λi,–=

σ̂
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where turbulence generated by large-scale random
forcing was simulated under periodic boundary condi-
tions.

In what follows, it is shown that the dependence of
scalar correlation functions on the velocity field is
determined by the function S, which is introduced phe-
nomenologically. As a result, possible types of behavior
of passive-scalar correlation functions depending on S
are predicted. Conversely, information about S can be
derived from correlation functions that are known from
experiment.

The matrix  defining the expansion and contrac-
tion directions evolves over a time interval t ≈ 1/λ,
reaching a steady-state limit when expansion becomes
sufficiently large. According to (12), this limit corre-
sponds to

(see [19]). By virtue of flow isotropy, the matrix values
are uniformly distributed on the group O(d). The

orthogonal matrix  substantially varies and becomes

decorrelated from  over a time interval on the order
of λ–1, and the corresponding distribution function is
also uniform on the group O(d).

4. AVERAGING OVER THE INITIAL 
SCALAR DISTRIBUTION

For an arbitrary distribution ϑ0(r), a Fourier compo-

nent (k, t) of the solution to Eq. (1) combined with
(8) can be written as

(15)

(16)

4.1. Evolution of an Individual Blob

For

expression (15) yields the scalar distribution

(17)

�̂

e
ρ1 � … � e

ρd

N̂

�̂

ϑ̃

ϑ̃ k t,( )

=  ϑ̃0 Ŵ
T
k( ) 1

2Pe( )2
----------------k ŴΛ̂Ŵ

T( )k– ,exp

Λ̂ λ t 'Ŵ
1–

t '( )Ŵ
1– T,

t '( ).d

0

t

∫=

ϑ0 r( ) Θ0 r( ),=

Θ r t,( ) keik r⋅d

2π( )d
-----------------Θ̃0 l kŴŴ

T
k( )∫=

× l2

2Pe( )2
----------------k ŴΛ̂Ŵ

T( )k–
⎩ ⎭
⎨ ⎬
⎧ ⎫

.exp

Without specifying the function Θ0(r), the blob can

be described in terms of the inertia tensor , defined as

(18)

Substituting (18) into Eq. (1) and using (8), we obtain

(19)

Suppose that l is defined so that the initial condition is

The relation between  and  is nonlocal in time:

(20)

In view of (20), the integral over k in (17) has a sig-
nificant value if

The contribution of the region of integration where

is negligible. Thus, the distribution Θ(r, t) is controlled

by the tensor . We say that a vector R fits into a blob
Θ(t) if

and does not fit into it if

Let us represent  as

(21)

where  and  are orthogonal and diagonal matrices,
respectively. As time elapses, the blob transforms into a

prolate ellipsoid with major axes , , and  (in

decreasing order), where  = Mii. The matrix 
determining the axes of the chaotically rotating ellip-
soid is uniformly distributed on the group O(3).

The equations for the logarithms mi of the blob’s
major axes are derived from (19):

(22)

The rotation velocity

Î

Iαβ
ϑ r( )rαrβ rd∫
l2 ϑ r( ) rd∫

------------------------------.=

dÎ
dt
----- σ̂Î Î σ̂T λ/Pe2.+ +=

Î t 0=( ) 1̂.=

Î Ŵ

Î Ŵ 1 Λ̂
Pe2
--------+ Ŵ

T
.=

kÎ k � 1.

kÎ k � 1

Î

RÎ
1–
R � 1,

RÎ
1–
R � 1.

Î

Î R̂�̂R̂
T
,=

R̂ �̂

e
m1 e

m2 e
m3

e
2mi R̂

ṁi σ̃ii λ 2 p mi+( )–( ),exp+=

σ̃ R̂
Tσ̂R̂, p 2Pe( ).ln= =

Ωr R̂
T∂t R̂=
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of the blob is given by the expression

(23)

A comparison of (23) with (12) shows that if

(the major axes differ substantially), then the statistical

characteristics of  are independent of , approaching

those of  by virtue of (11) in the limit of

When diffusion is negligible, the scalar field is only
advected by the flow and its deformation is controlled

by the same , because

and

mi = ρi.

Diffusion plays an important role in the dynamics of mi

when mi + p � 1 because  ≈ λ. According to (14), the
contraction of the blob is counterbalanced by diffusion
on the diffusive time scale

(24)

At later times, the major axis continues to increase
at the same rate, while the minor axis remains constant
at rd. This implies that the blob volume

exponentially increases and the mean value of the sca-
lar inside the blob exponentially decreases accordingly.
It follows from (17) that

(25)

4.2. Gaussian Statistics

Consider the case of a Gaussian initial field (r).

Performing the averaging over the ensemble of  in

(7) for a particular realization of  under initial condi-
tion (3) and using the fact that Eq. (1) is linear in ϑ, we
find that the scalar field remains Gaussian and statisti-
cally uniform in space, but not statistically isotropic.
The pair correlation function

(26)

Ωij
r σ̃ij m j mi–( )exp σ̃ ji mi m j–( )exp+

2 m j mi–( )sinh
------------------------------------------------------------------------------------.=

e
m1 � e

m2 � e
m3

σ̂̃ R̂

σ

e
ρ1 � e

ρ2 � e
ρ3.

Ŵ

Î ŴŴ
T
,=

σ̃

td λ 1– Peln .≈

V
ld

Θ r 0 t,=( )
---------------------------=

V ld det Î[ ]1/2∝ ld mi.
i

∑exp=

ϑ0
g

ϑ0
g

σ̂

G2 R t,( ) C2
r 'd

ld
-------Θ r ' R/2+ t,( )Θ r ' R/2– t,( )∫=

is not spherically symmetric. Let us decompose corre-
lation function (26) into a coordinate- and time-depen-
dent parts:

(27)

Whereas U(R, t) ~ 1 when R fits into the blob Θ(t), this
factor is a rapidly decreasing function when R does not
fit into the blob. Up to a factor on the order of unity that
depends on details of the scalar distribution inside the
blob,

.

When averaged over the ensemble of , the
2nth-order correlation functions given by (7) are fac-
tored into (2n – 1)!! contributions by Wick’s theorem.
Each contribution corresponds to a certain combination
of the set {rj} of 2n points into pairs. If the points in the
ith pair are separated by a distance Ri, then the fully
averaged contributions yield

(28)

where the subscript σ denotes averaging over the  sta-
tistics. The product of G2(Ri, t) in (28) means that a sub-
stantial contribution to (28) in the correlation function
�2n defined by (7) corresponds to realizations of the
process  in which all vectors Ri fit into the blob
described by (17).

4.3. Rare Fluctuations

Without loss of generality, an expression for the sca-
lar correlation functions averaged only over the ensem-

ble of  (for widely separated blobs) is derived by
assuming that one point in (7) lies at the origin:

r1 = 0.

In this case,

(29)

To decompose expression (29) into coordinate- and
time-dependent parts, note that the correlation function
vanishes if at least one of the vectors rk does not fit into
the blob. The time-dependent part behaves as follows:

Comparing  with (28), we see that contribution

(28) to the correlation function  defined by (7) in

the problem with initial scalar distribution  is pro-

portional to the correlation function  defined by

G2 R t,( ) U R t,( )G2 0 t,( ).=

G2 0 t,( ) C2 det Î[ ] 1/2– Θ0
2 0( )=

ϑ0
g

F2n
g G2 Ri t,( )

j 1=

n

∏
σ

,=

σ̂

σ̂

ϑ0
p

Gn
p Cn

r 'd

l3
-------Θ r ' t,( ) Θ rk r '+ t,( ).

k 1>
∏∫=

1

l3
--- r 'Θn r '( )d∫ det Î[ ] n 1–( )/2–

.∝

Gn
p〈 〉σ

�2n
g

ϑ0
g

�n 1+
p
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(7) in the problem with initial scalar distribution .
Note that the vectors rk in (29) correspond to the vectors

Ri in (28), which justifies the use of  and the averag-
ing of expressions (28) in the analysis presented below.
Note also that the second-order correlation functions
are formally similar in both limit cases of scalar distri-
bution.

Thus, the dependence of correlation functions (7)

corresponding to  and  on the realization of the

process  prior to averaging over the velocity statistics
is determined by . Therefore, the averaging over the
velocity statistics can be decomposed into the averag-
ing over the orientations of the blob described by (17)

(realizations of ) and the averaging over the degree of

expansion of the blob (realizations of the matrix 
defined by (21)).

5. AVERAGING OVER ROTATIONS

The averaging over the rotations  in (28) involves
the factor U(R). The averaging procedure is explained
here for the three-dimensional pair correlation func-
tion. If R � rd, then U(R) ~ 1 for any orientation in (17);
therefore, the angle-averaged result is 〈U〉a ~ 1. As the
magnitude R increases, the vector R cannot fit into an
arbitrarily oriented blob and 〈U〉a decreases. When the
value of R lies between the intermediate and smallest

sizes of the blob, the averaging over  should be per-
formed by taking such rotations that the vector R fits

into a slab of thickness . Thus, the averaging over

 yields

Finally, if R >  (R is larger than the blob size in any
direction), then 〈U〉a is exponentially small; i.e., all pas-
sive-scalar correlation functions vanish. The analysis

presented below is developed for R � . Expres-
sions (30) and (31) can be unified into

(32)

ϑ0
p

ϑ0
g

ϑ0
g ϑ0

p

σ̂
Î

R̂

�̂

R̂

R̂

le
m3

R̂

U R( )〈 〉 a

le
m3

R
---------, e

m3 � 
R
l
---  � e

m2,

le
m2

R
--------- le

m3

R
---------, e

m2 � 
R
l
---  � e

m1.
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

30( )

31( )

le
m1

le
m1

U R( )〈 〉 a χ m2– y+( )– χ m3– y+( )–{ },exp=

χ x( )
x, x 0,>
0, x 0,<⎩

⎨
⎧

=

where

Corrections to the argument of the exponential are of
order O(1). The asymptotic behavior of 〈U〉a described
by (32) can also be found by direct calculation using a

parameterization of  in terms of angles and averaging
U(R) over the angles.

The four-point correlation function can be calcu-
lated by using a configuration of points ri in (7) such
that R1 ⊥ R2 in (28). Suppose that R1 > R2. In averaging
the product U(R1)U(R2), the ellipse with axes R1 and R2

must fit into the blob. If  < R2, this cannot be done
and the contribution of the corresponding realization of

 vanishes. Otherwise,

(33)

where

In the general case, any pair R1, 2 can be used to con-

struct linear combinations  and  such that

up to a factor of order unity and  ⊥ , and R1, 2 on

the right-hand side of (33) should be replaced by ,
respectively. If the ellipse defined by the mutually

orthogonal vectors  fits into the blob, then so do
the vectors R1 and R2.

Analogously, the six-point scalar correlation func-
tion can be calculated by using three mutually orthogo-
nal vectors in (28). To be specific, assume that

The nonvanishing contributions to the six-point corre-
lation function correspond to blobs with

and

When these conditions are satisfied, the angle-averaged
product 〈 〉a is independent of R3, being for-
mally similar to (33). When the vectors in (28) are arbi-

trary, three mutually orthogonal vectors  such that

y R/l( ).ln=

R̂

le
m2

Î

U R1( )U R2( )〈 〉 a χ m2– y1+( )–[exp=

– χ m3– y1+( ) χ m3– y2+( ) ],–

y1 2, R1 2, /l( ).ln=

R̃1 R̃2

U R̃1( )U R̃2( ) U R1( )U R2( )=

R̃1 R̃2

R̃1 2,

R̃1 2,

R1 R2 R3.> >
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m2 � R2

le
m3 � R3.

U Ri( )
i∏

R̃i

U R̃i( )
i

∏ U Ri( )
i
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should be constructed, and the magnitudes  should
be substituted for Ri in (33).

For n ≥ 4 in (28), one can again find three mutually

orthogonal vectors  such that the vectors Ri in
(28) fit into the corresponding ellipsoid:

Thus, the average of a product of more than three func-
tions U can always be reduced to the average of a prod-
uct of three functions U of some mutually orthogonal
vectors.

6. SINGLE-POINT SCALAR STATISTICS

If the distances between the points {rj} in (7) are
smaller than rd, then U(Ri) ~ 1 for each contribution to
(28) irrespective of the velocity field realization. There-
fore, these factors can be ignored in averaging over the
velocity statistics. Single-point moments were ana-
lyzed in [15]. In this study, the averaging in single-point
moments is performed again to determine the velocity
fluctuations responsible for the dominant contribution
to a moment. The results are then used to simplify cal-
culations of non-single-point scalar correlation func-
tions. According to (17),

(34)

for an initial distribution  up to a factor of order unity
depending on details of distribution (17). The numeri-
cal factor

is omitted in this section.

Expression (34) for α = 2 can be interpreted as fol-

lows. The Gaussian form of the distribution  implies
that the inverse blob volume V–1 is much smaller than
the concentration of blobs in expression (3). The mean
value of the scalar in a particular blob is proportional to
1/V, while its sign is either positive or negative. The
number of blobs overlapping at a particular point is pro-
portional to V. Therefore, the mean square value of the
scalar is the sum of random variables,

Consider a non-Gaussian initial passive-scalar dis-
tribution. Suppose that the initial concentration of blobs
in (3) is relatively low: D ~ l. After the time interval td
defined by (24) has elapsed, diffusion tends to smear
the blobs. Therefore, at times t such that

R̃i

R̃1 2 3, ,

U Ri( )
i 1=

n

∏ U R̃k( ).
k 1=

3

∏≈

�α t( ) ϑα 0 t,( )〈 〉 βαC2
α det Î[ ] α/4–〈 〉= =

ϑ0
g

βα Γ α 1+( )/2[ ]21 α/2+ / π=

ϑ0
g

ϑ2〈 〉 V 2– V detÎ[ ] 1/2–
.∝ ∝

λ t td–( ) � 1,

the concentration of blobs approaches the limit

Accordingly, the statistics of the scalar field condi-
tioned on a particular realization of the process  can
be treated as Gaussian. The analysis that follows is
developed for these times, because the scalar correla-
tion functions obtained exhibit universal behavior.

To find an expression for �α in terms of the function
S, the averaging over the expansion statistics should be
performed in (34). It is shown below that the moments
�α are associated with velocity fluctuations substan-
tially different from typical realizations. Hereinafter,
the process responsible for the dominant weighted con-
tribution to a correlation function is called optimal fluc-
tuation.

To find the optimal fluctuation, consider an arbitrary
fluctuation under the following constraint on the pro-
cess : suppose that ρi(t) = t, where each  is on the

order of λ, but the equality  = λi may not hold. The
dominant contribution to this outcome is due to pro-
cesses fluctuating about the path

The fluctuation strength can be estimated as

(35)

by using expression (14) and representing ρi(t) as the
result of consecutive transitions from zero to ρi(t') over
a time interval t' and from ρi(t') to ρi(t) over the interval
t – t'.

Now, let us find the relation between mi(t) and ρi(t)
conditioned on this realization of the process . First,
consider the times such that p � λt � p2. At these times,
the diffusion limit has already been reached; i.e.,

for all  < 0. Since δρ(t') � p for typical fluctuations,
the scatter of typical paths ρ(t') leading to ρi(t) is negli-
gible as compared to p. By using (10), relation (20) is
rewritten as

(36)

Note that the dominant contribution to the integral

D d–
 � 1/V .

σ̂
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∫ λ
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corresponds to t' ≈ λ–1 if  > 0. If  < 0, then this inte-
gral is

,

being dominated by the contribution corresponding to
t – t' ∼ λ–1. Therefore, a significant contribution to the
second term in braces in (36) is due to the decaying ele-

ments of the matrix (t').

It is easy to see that  is determined by the values of

 at times t' such that t – t' ~ λ–1. To estimate the ele-

ments of , the matrix  is represented as

The elements of Ωo(t) are small and can be estimated by
using expression (12). First, suppose that  > 0. Then,

 is equal to  up to Pe–2. The larger two eigenvalues

are equal (m1, 2 = ρ1, 2), while the third eigenvalue of 
is

Here, the second term is a small correction neglected
in the analysis presented below. In the opposite case

of  < 0,  is a random rotation about the major
axis. The logarithm of the corresponding eigenvalue is
m1 = ρ1, while m2, 3 = –p up to corrections of order
ln[| |/λ]. Thus, to the required accuracy, it holds that

(37)

Now, let us use relation (37) to find �α. To be spe-
cific, suppose that the optimal fluctuation stretches the
blob along the second eigendirection:  > 0. Using
(37), we obtain

Finally,

(38)

where

Here, S is written instead of S(  – λ2,  – λ3) for

brevity. The saddle points (α) of the integrand in
(38) are determined by the equations

When  < 0 is calculated, the starting assumption that
the blob strained by optimal fluctuations expands in

λi' λi'

J λ/ λi'( ) 2tλi'( ) � Pe2exp=

D̂

Î

Ŵ

Î �̂

�̂ t '( ) 1 t t '–( )Ωo t( )–[ ]�̂ t( ).≈

λ2'

R̂ N̂

Î

m3 p– λ3' /λ[ ]/2.ln+=

λ2' R̂
T
N̂

λ2 3,'

mi p– χ ρi p+( ).+=

λ2*

�α C2
αPeα/2 αρ3/2{ }exp〈 〉 .=

�α C2
αPeα/2 λ2' λ3' t S αλ3' /2–( )–{ }expdd∫=

=  C2
αPeα/2 γ αt–( ),exp

γ α S λ3' α/2–( )min.=

λ2' λ3'

λ2 3,*

∂2S 0, ∂3S α/2.= =

λ2*

only one direction is violated, and the following
approximation should be used:

Thus, if the equations

(39)

yield a point at which

then optimal fluctuations correspond to  > 0, and
�α is given by (38). If ∂2S > α/2, then optimal fluctua-
tions correspond to  < 0, and

(40)

with

If 0 < ∂2S < α/2, then the largest contribution corre-
sponds to realizations in which the diffusion limit is
reached by the second Lyapunov exponent exactly at
the instant t. Therefore,

(41)

at times t' such that 0 < t' < t. As t  ∞, the asymptotic
limit value  = 0 is approached. The moment is
expressed as

(42)

where S and  are taken at the point determined by
(39). Note that the decay rate γα is a convex function of
α, γ2α < 2γα, which implies strong intermittency of the
passive scalar field:

For any function S that remains finite at  = 0, there
exists a critical value

such that the dependence of �α on α is completely

determined by . For α > αc,

This means that similar optimal fluctuations correspond
to all α > αc. Since the blob size along the contracting
directions reduces to rd for the first time at the instant t,
it holds that

The time dependence of �α is completely determined
by the statistical weight of these fluctuations.

�α C2
αPeα α ρ2 ρ3+( )/2[ ]exp〈 〉 .=

λ2' 0, ∂3S α/2,= =

∂2S 0,<

λ2*

λ2*

�α C2Pe( )αe
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γ α S λ2– λ3–,( ).=
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Numerical simulations show that αc ~ 10 [18]. This
result cannot be refined because more accurate values
of the derivatives of the function S at its minimum can-
not be inferred from the data presented in [18].

To obtain estimates corresponding to t � p2/λ, note
that if α < αc and the optimal value of  is not zero,
then the calculations that lead, in particular, to (38) can
be repeated for t � p2/λ.

Now, suppose that α < αc and 0 < S2 < α/2 at the
point determined by Eqs. (39). Since the statistics of the
processes  in (22) are not known in explicit form, the
analysis of the logarithm mi of the blob size is simpli-
fied by considering the following problem. The evolu-
tion of m2 is modeled by the motion of a Brownian par-
ticle on the x axis starting from the origin x = 0. To esti-
mate the contribution to �α due to the realizations of 
in which m2 is affected by diffusion only over a rela-
tively short time t' � t – λ–1 immediately before the
instant t, an absorbing wall boundary condition is set at
x = –p. The constraint

on the process  obviates the introduction of a drift
term. The probability that the Brownian particle sur-
vives for a time t � p2/t decreases as 1/t. Therefore, the
fraction of realizations for which ρ2(t') > –p at all times
before t among those ending up at ρ2(t) = –p is propor-
tional to 1/t. Accordingly, the exponential in long-time
asymptotic expression (42) should be multiplied by a
power of time. Thus, the moments calculated by finding
optimal fluctuations are valid at all times if n < αc. In
particular, relation (37) can be used in calculating �α.

Finally, consider the case of α > αc. Since diffusion
does not contribute to the optimal fluctuations corre-
sponding to t � p2/λ (see argumentation above), we
have ρ3(t) ≈ –p. The contribution of realizations subject
to a similar constraint at t � p2/λ is estimated by ana-
lyzing the motion of a Brownian particle as a model of
the evolution of m3. Since ρ3 < 0 for incompressible
flows, a reflecting wall boundary condition must be set
at x = 0 in addition to the absorbing wall at x = –p. The
corresponding probability that the Brownian particle
survives for a time t � p2/λ is proportional to
exp[−π2λt/4p2]. Accordingly, the realizations that are
affected by diffusion at all t' < t will significantly con-
tribute to �α in the long-time limit. Since the blob
expands and contracts to the smallest size rd several
times, moments of very high order cannot be evaluated
by finding optimal fluctuations. To calculate them, the
complete statistics of the process  may be required.

Henceforth, correlations (28) of order 2n are calcu-
lated for 2n < αc.

λ2*

σ̃ii

σ̂

ρ2 t( )/t p/t � 1–=

σ̂

σ̃

7. TWO-DIMENSIONAL PROBLEM

Recalling that the distribution ϑg analyzed here

evolves from a Gaussian initial distribution  (see
Section 2), we consider a two-dimension flow at
t � p/λ].

In this case, an analysis analogous to that presented
in Section 6 is much simpler to perform, because it does
not involve the Lyapunov exponent associated with the
intermediate eigendirection. For α < αc,

(43)

where

Applying an angle-averaging procedure analogous
to that presented in Section 5 to the two-dimensional
pair correlation function (27), we obtain

(44)

The four-point correlation function does not vanish
when mutually orthogonal vectors R1 and R2 lie in the
same blob, in which case

Therefore,

(45)

Proceeding to the calculation of correlation func-
tions, note that the corresponding optimal fluctuations
can be determined by using the optimal fluctuations
found for single-point moments �n. To evaluate the pair
correlation function, we use relation (37) to write

(46)

Performing the integral with respect to ρ2, we obtain the
scaling law

(47)

Thus, the optimal fluctuations for the two-dimensional
pair correlation function are similar to those for �2. The
factor 1/R in (47) results from the averaging over
rotations (see Section 5), because the smallest size of
the blob strained by relevant fluctuations is on the order
of rd.

Now, consider one of the six contributions to (28)
for the four-point correlation function. A nonvanishing

ϑ0
g

�α C2Peα/2 γ αt–( ),exp=

γ α S λ2' α–( )min.=

U R( )〈 〉a χ m2– y+( )–[ ], yexp R/l( ).ln= =

R2 le
m2.<

U R1( )U R2( )〈 〉 a χ m2– y1+( )–[ ],exp=

yi Ri/l( ).ln=

�2 R( ) C2 ρ2d∫=

× tS x2( )– χ m2– y+( )– m1 m2 p–+( )–[ ].exp

�2 R( ) C2e y– ρ2 tS x2( )– ρ2+[ ]expd∫=

=  
l
R
--- γ 2t–( ).exp
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contribution is obtained only if R2 fits into the smallest

blob size  at the instant t:

(48)

To find an optimal fluctuation, consider the follow-
ing class of realizations of the process . Initially, the
largest blob size increases:

The smallest size decreases to rd over a time interval
 ≈ –p/  and increases at  < t'. Accordingly, we can

write t' > t – τ

Assuming that 1 � z � λt, we find that the blob volume
given by (25) is

Since

at all t' � λ–1, the process  in (22) has statistical char-
acteristics similar to those of  in (11). To extend anal-
ysis to orders other than n = 4, the probability of this
process is sought with a weighting factor V–α/2 (α < αc),
in accordance with (34). Using the saddle-point value

(α) in averaging over , we obtain

(49)

The optimal value of τ that maximizes �α(z, τ) is found
here by using a quadratic function S in order to calcu-
late the final result:

In this case,

(50)

The contribution of optimal fluctuations to the correla-
tion function is found by substituting �4 given by (50)
into expression (48) and averaging over z:

le
m2 t( )

F2n C2
n R1

le
m2

---------
n m1 m2+( )

2
---------------------------–exp

le
m2

R2>
,=

n 2.=

σ̂

m1 t '( ) λ2' t '( ),–=

0 t ' t – τ, 0 λ2' λ.∼>< <

td' λ2' td'

m2 t( ) rdez.=

V λ2' t τ–( )– p–[ ].exp=

e
m1 � e

m2

σ̃
σ

λ2* λ2'

�α z τ,( )
=  γ αt– τ S z/τ λ2–( ) αz/2τ–( ) γ α–[ ]–{exp

– αz/2 αp/2 }.+

S x2( ) S22x2
2/2.=

�α z( ) Peα/2 γ αt–( )exp∝

× z α/2 2 λ2* S22+( )–[ ].exp

(51)

(52)

where n = 2. Note that the optimal value of z* is such
that

Expression (51) must be a good approximation of the
correlation function because the contributions of differ-
ent fluctuations are vanishingly small. For example, a
contribution decaying as exp(– t) is obtained when

the change in the smallest size to rdez is modeled by
using the linear function

However, no rigorous proof of (51) is available.
Contributions (28) to higher order correlation func-

tion (7) such that 6 ≤ 2n < αc are found by using the pro-
cedure for calculating F4 in (51) for the following rea-
son. As argued in Section 5, the averaging over rota-
tions should be performed by changing to the product

U( )U( ) with mutually orthogonal vectors .
The ellipse defined by these vectors must be sufficiently
large for the vectors in (28) to fit into it. Averaging over
the expansion yields expressions (48)–(51) for any
admissible n. Thus, contribution (28) with n ≥ 3 is also

given by (51) with  instead of R1, 2.

7.1. Thin-Film Flows

As an example of two-dimensional flow, consider
the flow of a film with thickness h treated as a passive
scalar [20, 21]. Analogy with a standard scalar advec-
tion-diffusion problem, such as temperature decay, is
incomplete because the equation for h describes hyper-
diffusion rather than Fickian diffusion:

(53)

Changing to the Fourier representation and using the
velocity field described by (8), we solve Eq. (53) for the
blob evolving from an initial distribution Θ0(r/l):

(54)
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k⎝ ⎠

⎛ ⎞ l4

Pe4
--------–

⎩
⎨
⎧

exp=

× t ' k Ŵ Ŵ
T
Ŵ( )

1–
t '( )Ŵ

T( )k[ ]
2

d

0

t

∫ ⎭
⎬
⎫

,
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with the Peclet number again defined as

where the diffusive scale is

The relevant wavevectors k in (54) satisfy the inequal-
ity

as in (17). Therefore, the product of n functions
G2(Ri, t) given by (26) can be averaged over the veloc-
ity ensemble by following the procedures described in
Sections 5 and 7.

8. THREE-DIMENSIONAL PROBLEM

The correlation functions for a passive scalar in a
three-dimensional flow are classified according to the
value of ∂2S at the point defined by (39) with an appro-
priate α. Recalling that a Gaussian initial distribution

 is considered here (see Section 2), we examine the
limit of t � p/λ.

To evaluate the pair correlation function, we make
use of relation (37) and follow the analysis of the sin-
gle-point second-order moment given by (34) with
p  –y. Classifying possible cases according to the
value of ∂2S at the point defined by (39) for α = 2, we
find that optimal fluctuations are independent of R if
S2 < 0, because the intermediate size of the blob is
much larger than R. Hence, we obtain the scaling law

(55)

Optimal fluctuations are also independent of R if S2 > 1
at the point defined by (39). In this case, since the inter-
mediate size of the blob strained by optimal fluctua-
tions is on the order of the diffusive scale, we have

(56)

If the optimal fluctuations corresponding to R = 0 are
such that the diffusion limit is reached by the second
Lyapunov exponent exactly at the instant t, in which
case 0 < S2 < 1, then it follows from the condition

that optimal fluctuations follow the path

Pe l/rd,=

rd κ̃/λ( )1/4.=

k Îk � 1,

ϑ0
g

�2 R t,( ) C2 γ 2t–( ) l
R
---.exp=

�2 R t,( ) C2 γ 2t–( ) l2

R2
-----.exp=

R2/rd( ) � λtln

ρ2 t '( ) t '/t( ) R2/l( ).ln≈

Expanding the function S about the point defined by
(39) to second order, we obtain

(57)

where

Note that Kraichnan’s model makes use of this approx-
imation. Substituting expression (76) for S given by
that model yields [13]

(58)

This result is obtained for

in which case the last exponential in (57) is close to
unity. Note that the second-order correlation function is
independent of diffusivity: expressions (55)–(57) are
valid for κ = 0.

According to the analysis developed in Section 5,
contribution (28) to the four-point correlation function
given by (7) can be evaluated by assuming that the vec-
tors R1, 2 in (28) are such that R1 ⊥ R2. The analysis also
shows that a significant contribution to the correlation
function is due to realizations in which the intermediate
size of the blob is not smaller than R2. It is assumed here
that R1 � R2. If S2 < 0, then the intermediate size of the blob
strained by optimal fluctuations exponentially increases
with time. Therefore, the dependence on R1, 2 is entirely

due to the averaging over the matrix  in (21), and

(59)

If 0 < S2 < 1, then the final value of ρ2 is ln(R1/l) and the
result obtained in the limit of

is

(60)

If 1 < S2 < 2, then ρ2 linearly increases with time, reach-
ing the value ln(R2/l).

For

we have

(61)

�2 R t,( ) C2 γ 2t–( ) R/l( )
1– S2–

exp=

× S̃22

2t
------- R/l( )ln( )2–

⎩ ⎭
⎨ ⎬
⎧ ⎫

,exp

S̃22 S22 S23
2 /S33.–=

�2 R t,( ) C2 λt/4–( ) R/l( ) 3/2– .exp=

λt � R/l( )ln[ ]2,

R̂

F4 R1 R2 t, ,( ) C2
2 γ 4t–( ) R1/l( ) 1– R2/l( ) 1– .exp=

λt � R1/l( )ln[ ]2

F4 R1 R2 t, ,( )

=  C2
2 γ 4t–( ) R1/l( )

1– S2–
R2/l( ) 1– .exp

λt � R2/l( )ln[ ]2

F4 R1 R2 t, ,( )

=  C2
2 γ 4t–( ) R1/l( ) 2– R2/l( )

S2–
.exp
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If S2 > 2, then the intermediate size of the blob strained
by an optimal fluctuation initially decreases to rd over a
time interval on the order of td and then increases to R2
shortly before the instant t. The optimal fluctuation cor-
responding to the four-point correlation is found by fol-
lowing the analysis developed for two-dimensional
flows. The only difference is that averaging should also
be performed over the decreasing quantity ρ3. Again,
using

as an example, we obtain

(62)

where

(see Section 6). When a better fitting function S is used
instead of a quadratic approximation, the power-law
dependence on R1 holds, whereas a more intricate func-
tion of R2 is obtained.

Finally, possible types of spatial dependence of the
six-point correlation function are obtained by assuming
that the vectors Ri in (28) are mutually orthogonal and
R1 � R2 � R3. The final results are presented below for

By the time t, the intermediate and largest sizes of the
blob strained by optimal fluctuations must be at least R2
and R3, respectively. If S2 < 0 at the point defined by
(39) for α = 6, then we have an optimal  > 0. The
largest and intermediate sizes increase with time
elapsed, while the smallest one initially decreases to rd
and then increases to R3 over the time interval between
t – τ and t. The time τ is determined by the method used
in Section 7 for the four-point correlation function. If
S2 > 3, then both the intermediate and smallest sizes ini-
tially decrease to rd and then increase to R2 and R3,
respectively. The final results are

(63)

(64)

S Sijxix j/2=

F4 R1 R2 t, ,( ) C2
2Pe2=

× γ 4t–( ) R1/l( ) 2– R2/rd( )
1– 2S̃22 λ2*–

,exp

S̃22 S22 S23( )2/S33, λ2*– λ2* 4( )= =

S Sijxix j/2.=

λ2*

F2n C2
nPen 2– γ 2nt–( ) R1/l( ) 1– R2/l( ) 1–exp=

× rd/R3( )
n 2–( ) 2S̃33 λ3*+

,

S2 0,<

F2n C2
nPe2 n 1–( ) γ 2nt–( ) R1/l( ) 2–exp=

× nz2– n 1–( )z3– Sij λi* z j–
Sijziz j

Sijλi
*λ j

*
-------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

,exp

S2 n,>

where

The case of 0 < S2 < 3 is more difficult to analyze. Con-
sider a function S subject to the additional constraint

S23 > 0.

This means that the small deviations δρ2 and δρ3 asso-
ciated with relevant fluctuations are anticorrelated
(with weight V–3). The smallest size increases from the
diffusive scale at t – τ to R3 at t. The intermediate size
of the blob strained by optimal fluctuations does not
reach rd, and the corresponding ρ2 varies linearly with
time. The growth rate (t') drops over a time interval
t ~ λ–1 after the instant t – τ. For 0 < S2 < 1, the optimal
value is

For 1 < S2 < n (n = 3), we have

In the long-time limit, the final results are

(65)

(66)

In expressions (63)–(66),

To determine correlation function (7) of order 2n
such that 8 ≤ 2n < αc, the required contributions (28)
should be evaluated by using three mutually orthogonal

vectors  (see Section 5), and then F2n is calculated by
following the procedure developed for F6. As a result,
expressions (63)–(66) with the appropriate n are
obtained.

8.1. Angular Singularities

As an illustration, scalar correlation functions are
now written out in explicit form.

First, consider the distribution ϑg for blobs sepa-

rated by a distance D � l. Since  is Gaussian zero-
mean distribution, all odd-order correlation functions
vanish (see Section 2). An expression for the fourth-

n 3,=

zi Ri/rd( ), iln 2 3, S̃33, S33 S23( )2/S22.–= = =

ρ̇2

ρ2* t( ) R1/l( ).ln=

ρ2* t( ) R2/l( ).ln=

F2n Pen 2– γ 2nt–( ) R1/l( )
1– S2–

R2/l( ) 1–exp=

× rd/R3( )
n 2– 2S̃33 λ3*+

,

0 S2 1,< <

F2n Pen 2– γ 2nt–( ) R1/l( ) 2– R2/l( )
S2–

exp=

× rd/R3( )
n 2– 2S̃33 λ3*+

,

1 S2 n.< <

λi* λi* 2n( ).=

R̃i

ϑ0
g



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 102      No. 4      2006

SPATIAL DEPENDENCE OF CORRELATION FUNCTIONS IN THE DECAY PROBLEM 699

order correlation is written here for a configuration of
points such that

where

Thus, the points r2, r3, and r4 are separated by distances
on the order of r34, while r1 is located at a much larger
distance r12. The correlation function is

(67)

The angular singularity corresponds to the limit r34  0.
The first two terms in brackets in (67) are equal, while
the last term is independent of r34. Using expressions
(59)–(61), we obtain

(68)

where

(69)

depending on the velocity statistics and

In the opposite limit of initial distribution ϑp (see
Section 4), when the concentration of blobs is c � 1,
each of the three contributions to (67) can be associated
with a third-order correlation function. For the same
configuration without the point r4, the correlation func-
tion

(70)

is proportional to the first term in (67).
Note that expressions (67) and (70) are valid at times

when the blob size has reached the diffusive scale rd,

9. CONCLUSIONS

Statistical characteristics of the passive scalar in the
decay problem are very different from that in the case
of a constantly injected scalar [8, 10, 16]. To summarize
the results of this study and describe the spatial distri-
bution of the scalar, the approach used in Section 2 is

r12 || r43, r12 � r43 � rd,

r32 r34, r32 r43,⊥=

rij ri r j.–=

�4
g ri{ } t,( ) C2

n〈 det Î[ ] 2–
U r14( )U r32( )[{=

+ U r13( )U r12( ) ] U r12( )U r43( ) }〉.+

�4
g ri{ } t,( )

=  C2
2Pex γ 4t–( )

rd

r12
------⎝ ⎠

⎛ ⎞
a

2
rd

r23
------⎝ ⎠

⎛ ⎞
b

1+ ,exp

1 a 2, b< < 1 or a 2, b 2>= =

x
a b,    + b 2<
4,            b 2. >⎩

⎨
⎧

 
=

�3
p r1 r2 r3; t, ,( ) C4 det Î[ ] 2–

U r13( )U r32( )〈 〉=

=  C4Pex γ 4t–( )
rd

r12
------⎝ ⎠

⎛ ⎞
a rd

r23
------⎝ ⎠

⎛ ⎞
b

exp

t � λ 1– Pe.ln

 

invoked here. The initial distribution 

 

ϑ

 

0

 

(

 

r

 

) character-
ized by a correlation length 

 

l 

 

is represented by spherical
blobs of diameter 

 

l 

 

chaotically dispersed in space.
Recall that a spherical scalar blob means a scalar distri-
bution 

 

Θ

 

0

 

(

 

r

 

/

 

l

 

) such that 

 

ϑ

 

 = 0 everywhere except for a
region of diameter 

 

l

 

. Scalar correlation functions are
determined by averaging over the initial locations of the
blobs in space and over the velocity gradient statistics.

The flow strains the blobs. The blobs separated by a
distance smaller than the viscous scale 

 

η

 

 are similarly
strained and similarly oriented in space. Since the
smallest blob size cannot be smaller than the diffusive
scale 

 

r

 

d

 

, the volume of a blob increases after its smallest
size has reached the diffusive scale. The spatial distri-
bution of the scalar is smoothed out as the scalar fluctu-
ation intensity decreases with time elapsed.

The flow involves rare velocity fluctuations that rel-
atively weakly strain the scalar blobs, and the scalar
fluctuation amplitude remains relatively high in these
blobs. Even if the initial scalar field is Gaussian, strong
intermittency develops as the smallest blob size reaches
the diffusive scale; in particular,

Intermittency characterized by anomalous statistics of
this kind is typical for turbulent systems [4] (see also
[22, 23]).

In the long-time limit, scalar correlation functions
strongly depend on orientation. The nature of these
angular singularities can be understood by considering
widely separated blobs. In this case, the dominant con-
tributions to the equal-time scalar correlation functions
are due to the regions where all points lie in the same
blob. In particular, the single-point moments have the
form

where 

 

Θ

 

(

 

r

 

, 

 

t

 

) is the scalar distribution in a blob and 

 

D

 

is the distance between blobs. If the points in a correla-
tion function are separated by distances on the order of

 

r

 

d

 

, then any blob averaged over its possible locations
that contains at least one of the points in a correlation
function contributes to the correlation function. If the
distances between the points are larger than 

 

r

 

d

 

 and lie
on the same line, then the number of contributing blobs
is much smaller. Only the flow regions where blobs are
aligned with this line contribute to the correlation func-
tions. Even less numerous are the regions where scalar
blobs contain all points in a correlation function if these
points lie in the same plane at distances much larger
than 

 

r

 

d

 

 from one another. Finally, there are very few
blobs whose three sizes are substantially larger than the
diffusive scale. In this study, the averaging over blob
orientations is considered in detail. The results include
the three-point scalar correlation function (Section 7.1,
Eq. (70)) and general expressions corresponding to

ϑ2α〈 〉  � ϑα 2〈 〉 .

ϑp( )n〈 〉 l
D
----⎝ ⎠

⎛ ⎞
3

Θ r 0 t,=( )[ ]n,≈
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two- and three-dimensional flows (Sections 7 and 8,
respectively).

The case of a zero-mean Gaussian distribution  is
also considered here. It can be represented as a super-
position of chaotically dispersed spherical blobs with
positive and negative scalar values. The distances
between blobs are small, 

 

D

 

 

 

�

 

 

 

l

 

. Since the scalar field is
invariant under the change 

 

ϑ

 

g

 

  –

 

ϑ

 

g

 

, only even-order
scalar correlation functions do not vanish. The 2

 

n

 

th-
order scalar correlation function is the sum of contribu-
tions in which the 2

 

n

 

 points are combined into pairs.
When the averaging over blob locations is performed,
significant contributions are obtained only when the
points of each pair are contained in the same blob.
Since the present analysis is restricted to 

 

r

 

 

 

�

 

 

 

η

 

, all such
pairs lie in blobs having similar shapes and orientations
in space. This situation is somewhat analogous to the
case when all points are contained in a distribution ϑp.

In the case of , the correlation function of order n + 1
is proportional to the contribution to the 2nth-order cor-

relation function in the case of  described above.
Since there are (2n)!/[2nn!] combinations of 2n points
into pairs, the spatial dependence of equal-time scalar
correlation functions is more complicated in the case

of . The general expression for the four-point corre-
lation function is obtained for a special geometry (Sec-
tion 8.1). Expressions for higher order correlation func-
tions are too cumbersome to be written out here. The
angular singularities arising in the case of a constantly
injected scalar were studied for r � l in [24] and for
r � l in [25] (l is the injection scale).

Note the following property of the scalar pair corre-
lation function �(R): when R � rd, it is independent of
diffusivity for arbitrary velocity statistics such that
αc > 2. Recall that if α > αc and the initial distribution
ϑg is Gaussian, then the moments 〈|ϑα|〉 are controlled
by similar velocity fluctuations in which the flow is
nearly frozen. The value of αc depends only on the
velocity statistics in the viscous range. In the case of a
general velocity field, high-order correlation functions
depend on diffusivity, even though the fourth-order sca-
lar correlation function may be independent of diffusiv-
ity for some velocity statistics such that αc > 4 (see
expressions (59)–(61)).

Over the time interval

,

a fluid element of initial size η contracts along a certain
direction to a size on the order of rd. Accordingly,
approximation (9) fails for r � rd, and the results
obtained in this study are not valid. For elastic turbu-
lence, the theory developed here fails on the time scale

ϑ0
g

ϑp

ϑ0
g

ϑg

tη λ 1– η/rd[ ]ln≈

tL λ 1– L0/rd[ ].ln≈

Note also that it is frequently supposed in experi-
ments on turbulent dispersion of passive tracers [20, 21,
26] that the range of the Batchelor regime is not limited
by the viscous scale and extends to the forcing scale L.
It was shown in [6, 7] that velocity fluctuations in the
direct-cascade range vary as

The final results presented here are obtained by taking
into account only the exponential in expression (14).
Therefore, these results should remain valid if a loga-
rithmic correction is introduced. However, further anal-
ysis is required to obtain a final answer to this question.

APPENDIX

In Kraichnan’s model, the process  in (8) is a zero-
mean white noise:

(71)

where d is the space dimension. The fluctuating part of

 in (10) is characterized by an autocorrelation func-

tion similar to (71). Since the matrix (t) depends on

(t), the mean value of  does not vanish. To calculate

〈 〉, contact terms should be factored out. To do this,

the rotation matrix (t) is represented as

Hence,

(72)

Combining (12) with the identity

and taking the limit as δt  0, we find that only diag-

onal elements of the matrix 〈 〉 do not vanish. Thus,

(73)

where ξi is Gaussian noise with autocorrelation func-
tion

(74)

δv r( ) r r/rd( )ln[ ]1/3.∝

σ̂

σαi t1( )σβj t2( )〈 〉

=  � d 1+( )δijδαβ δiαδ jβ– δiβδ jα–[ ]δ t2 t1–( ),

σ̂
N̂

σ̂ σ̂
σ̂

N̂

N̂ t( ) N t δt–( ) 1 t 'Ω̂n
t '( )d

t δt–

t

∫+ .=

σ̂〈 〉 t 'Ω̂n
t '( )N̂

T
t δt–( )σ̂ t( )N̂ t δt–( )d

t δt–

t

∫–=

∫ + permuted terms .

t 'δ t ' t–( )d

t

∫ 1
2
---=

σ̂

σ̂ii
�d
2

-------- 2 ρi ρ j–( )[ ]coth
j i≠

d

∑ ξi,+=

ξi t( )ξ j t '( )〈 〉 δ t t '–( )� dδij 1–( ).=
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Suppose that ρ1 > … > ρd. At times t � 1/�, the joint
probability distribution function of ρi has the form

(75)

where S is the Cramer function

(76)

Note that if the decomposition

is used instead of (10), where  is an upper triangular
matrix with Tii = 1, then expression (76) is exact [27].
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Ŵ N̂ D̂T̂=

T̂

7. G. Falkovich and V. Lebedev, Phys. Rev. E 50, 3883
(1994); 49, 1800 (1994).

8. G. K. Batchelor, J. Fluid Mech. 5, 113 (1959).
9. A. Groisman and V. Steinberg, Nature 405, 53 (2000).

10. R. H. Kraichnan, Phys. Fluids 11, 945 (1968).
11. A. P. Kazantsev, Zh. Éksp. Teor. Fiz. 53, 1806 (1967)

[Sov. Phys. JETP 26, 1031 (1967)].

12. G. Falkovich, K. Gaw dzki, and M. Vergassola, Rev.
Mod. Phys. 73, 913 (2001).

13. M. Chertkov and V. Lebedev, Phys. Rev. Lett. 90,
034501 (2003).

14. M. Chaves, G. Eyink, U. Frisch, and M. Vergassola,
Phys. Rev. Lett. 86, 2305 (2001).

15. E. Balkovsky and A. Fouxon, Phys. Rev. E 60, 4164
(1999).

16. M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebe-
dev, Int. J. Mod. Phys. B 10, 2273 (1996); Phys. Rev. E
51, 5609 (1995).

17. R. Ellis, Entropy, Large Deviations and Statistical
Mechanics (Springer, Berlin, 1985).

18. S. S. Girimaji and S. B. Pope, J. Fluid Mech. 220, 427
(1990).

19. I. Goldhirsch, P.-L. Sulem, and S. A. Orszag, Physica D
(Amsterdam) 27, 311 (1987).

20. Y. Amarouchene and H. Kellay, Phys. Rev. Lett. 93,
214504 (2004).

21. X.-L. Wu, B. Martin, H. Kellay, and W. I. Goldburg,
Phys. Rev. Lett. 75, 236 (1994).

22. G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal,
Phys. Rev. E 54, 4896 (1996).

23. I. V. Kolokolov and K. S. Turitsyn, Zh. Éksp. Teor. Fiz.
121, 1219 (2002) [JETP 94, 1193 (2002)]

24. E. Balkovsky, M. Chertkov, I. Kolokolov, and V. Lebe-
dev, Phys. Rev. E 52, 4924 (1995); Pis’ma Zh. Éksp.
Teor. Fiz. 61, 1012 (1995) [JETP Lett. 61, 1049 (1995)].

25. E. Balkovsky, G. Falkovich, V. Lebedev, and M. Lysian-
sky, Phys. Fluids 11, 2269 (1999).

26. M.-C. Jullien, P. Castiglione, and P. Tabeling, Phys. Rev.
Lett. 85, 3636 (2000).

27. A. Gamba and I. V. Kolokolov, J. Stat. Phys. 94, 759
(1999).

Translated by A. Betev

e
ˆ


