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The method for the computation of the conditional probability density function for the nonlinear
Schrödinger equation with additive noise is developed. We present in a constructive form the conditional
probability density function in the limit of small noise and analytically derive it in a weakly nonlinear case.
The general theory results are illustrated using fiber-optic communications as a particular, albeit practically
very important, example.
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The nonlinear Schrödinger equation (NLSE) is one of
the most general and fundamental models of nonlinear
science, with a vast number of applications ranging
from hydrodynamics, plasma physics, and biophysics to
modern high-speed fiber-optic communications (see, e.g.,
Ref. [1–12] and references therein). The NLSE, in par-
ticular, describes in the main order high-frequency wave
propagation in media with nonlinear and dispersive effects,
making it a very generic mathematical model. The NLSE
is also of special interest, because it presents an example of
an integrable nonlinear system with an infinite number of
degrees of freedom [8]. Here, without loss of generality, we
discuss the NLSE in the practically important context of
optical communications; however, the obtained mathemati-
cal results are very general and may be applied in a wide
range of physics problems. We present a method for
computing a conditional probability density function
(PDF) for the NLSE with additive white Gaussian noise.
We apply the developed method for the derivation of an
analytical expression for the PDF in the practically impor-
tant limit of weak nonlinearity.
The Letter is organized as follows. First, we show that

instead of the direct massive statistical numerical modeling
(e.g., using Monte Carlo methods) of the NLSE with
different realizations of the noise one can calculate numeri-
cally a path integral where the integration over different
noise realizations is done analytically. This is an important
and nontrivial step change simplifying the overall numeri-
cal modeling of the probability density function for the
equation of high practical importance (in the optical
communication context) and of wide applicability across
many areas of physics. Then, we demonstrate that in the
case when the signal-to-noise power ratio is large, the
main contribution to the path integral gives the “classical
trajectory.” We found the equation for the classical trajec-
tory, and the solution of this equation gives the main

contribution to the conditional probability density function.
Then, we demonstrate the application of our method to the
calculation of the conditional probability density function
for a specific example. We would like to stress that the
proposed methodology of calculation of the general condi-
tional probability is applied to an arbitrary field at a
destination (received signal) and as such, cannot be practi-
cally obtained through direct Monte Carlo modeling of the
NLSE for different noise realizations.
Consider the nonlinear Schrödinger equation for a field

ψωðzÞ with additive noise ηωðzÞ presented here in the
frequency domain,

∂zψωðzÞ ¼ i
β2
2
ω2ψωðzÞ þ ηωðzÞ

þ iγ
Z

dω1dω2

ð2πÞ2 ψω1
ðzÞψω2

ðzÞψ̄ω3
ðzÞ: ð1Þ

Here and in what follows ω3 ¼ ω1 þ ω2 − ω. In the
optical-fiber applications context, β2 is the group velocity
dispersion parameter, γ is the Kerr nonlinearity coefficient,
the bar means complex conjugation, ηωðzÞ is an additive
complex white noise (resulting in fiber communication
applications from optical amplification) with zero mean
and correlation function [7,11]: hηωðzÞη̄ω0 ðz0Þiη ¼
2πQδðz − z0Þδðω − ω0Þ. Using the Martin-Siggia-Rose for-
malism [13–15], we can formally present the conditional
probability density P½YðωÞjXðωÞ� to have ψωðLÞ ¼ YðωÞ if
ψωð0Þ ¼ XðωÞ in the form of the Feynman path integral,
corresponding to the Eq. (1),

P½YðωÞjXðωÞ� ¼
Z

ψωðLÞ¼YðωÞ

ψωð0Þ¼XðωÞ
Dψ exp

�
−
S½ψ �
Q

�
; ð2Þ

where the action S½ψ � reads
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S½ψ � ¼
Z

L

0

dz
Z

dω
2π

jLð0Þ½ψ � − V½ψ �j2; ð3Þ

Lð0Þ½ψ � ¼ ∂zψωðzÞ − i
β2
2
ω2ψωðzÞ; ð4Þ

V½ψ � ¼ iγ
Z

dω1dω2

ð2πÞ2 ψω1
ðzÞψω2

ðzÞψ̄ω3
ðzÞ; ð5Þ

with the measure Dψ defined as

Dψ ¼ lim
δ→0
M→∞

lim
Δ→0
N→∞

�
δ

ΔπQ

�
NM YM

j¼1

YN
i¼1

dψ i;j; ð6Þ

here, dψ i;j ¼ dRefψ i;jgdImfψ i;jg, and the first and
second indices in the ψ i;j enumerate the z and

ω coordinates, respectively, see below. Since the action
S½ψ � is not a quadratic form in the functions ψωðzÞ and
ψ̄ωðzÞ, the path integral (2), in a general case, cannot be
calculated analytically. Examples when the path inte-
gral for the PDF can be derived analytically include
the case of zero dispersion, β2 ¼ 0 [16], and a specific
constraint on the initial field to be a soliton [17,18].
However, the presentation of the PDF in the form of the
integral (2) is convenient for numerical computation
and for using a perturbation theory. For the purpose of
numerical calculations of the PDF, Eq. (2) should be
presented in a discrete form. Taking into account the
causality principle, which in our case means that the
function ψωðzÞ is affected only by the dynamics of
ψωðz0Þ in the preceding points of evolution at z0 < z,
we obtain

P½YðωÞjXðωÞ� ¼ lim
δ→0
M→∞

lim
Δ→0
N→∞

~Λ
Z �YM

j¼1

YN−1

i¼1

dψ i;j

�
exp

�
−
Δδ
Q

XN
i¼1

XM
j¼1

���� δψ i;j

Δ
− i

β2
2
ω2
jψ i−1;j − Vi−1;j

����2
�
: ð7Þ

Here ~Λ ¼ ðΔπQ=δÞ−NM, ψ i;j ¼ ψωj
ðziÞ, δψ i;j ¼ ψ i;j−

ψ i−1;j, zi ¼ iΔ, i ¼ 0; 1;…; N, zN ¼ L, ωj ¼ Ωminþ
2πðj − 1Þδ, j¼ 1;2;…;M, ωM ¼ Ωmax, W¼Ωmax−Ωmin.
In Eq. (7) we took into account the boundary condi-
tions ψ0;j ¼ XðωjÞ ¼ Xj, ψN;j ¼ YðωjÞ ¼ Yj. The
conditional probability satisfies the standard conditionR
DYP½YðωÞjXðωÞ� ¼ 1, where DY ¼ Q

M
j¼1 dYj (see for

details Eq. (13) in Ref. [15]). Equation (7) is the first
important result of our work. The 2MðN − 1Þ-fold integral
can be calculated numerically with the required accuracy
using Monte Carlo methods, see, e.g., Ref. [19]. Therefore,
Eq. (7) provides a constructive way to compute the PDF
for the NLSE in most general cases.
Moreover, the presentation (7) allows us to develop the

perturbation theory using a small nonlinearity parameter
and derive an analytical expression for the conditional
probability. To do so, let us introduce two dimension-
less parameters, ~γ ¼ γPaveL and ϵ ¼ QLW=ð2πPaveÞ ¼
1=SNR, where Pave ¼ T−1

total

R ðdω=2πÞjXðωÞj2 is the aver-
age power of the signal, T total is the full time interval of a
signal pattern, and W=ð2πÞ is noise bandwidth [we imply
that signal bandwidth is equal or less than W=ð2πÞ].
The dimensionless parameter ϵ is nothing more than the
inverse power signal-to-noise-ratio (SNR). The dimen-
sionless parameter ~γ describes the effective nonlinearity.
Later, we impose that ~γ ≪ 1 and develop the perturbation
theory in the parameter ~γ for different values of ϵ. In the
case ~γ=ϵ ≪ 1 we can expand the exponential function in
Eq. (2). When the parameter ~γ ≪ 1 and ~γ=ϵ ∼ 1, or even
~γ=ϵ ≫ 1, we use a method similar to that developed in
quantum mechanics for finding the classical trajectory of
the particle.

Let us start the consideration from the case ~γ=ϵ ≪ 1.
Using standard methods of quantum field theory, see
Refs. [13,20], we expand the exponent in Eq. (2) at small
γ. After that the function P½YðωÞjXðωÞ� can be represented
as a series in γ,

P½YðωÞjXðωÞ� ¼
X∞
n¼0

γn

n!
PðnÞ
ðγÞ ½YðωÞjXðωÞ�: ð8Þ

In zero order in γ we obtain an effective Gaussian channel
approximation (see Ref. [15]),

Pð0Þ
ðγÞ ½YðωÞjXðωÞ� ¼ Λ exp

�
−

1

QL

Z
dω
2π

jBðωÞj2
�
; ð9Þ

where Λ is the normalization constant, Λ ¼ Pð0Þ
ðγÞ ½0j0� ¼

ðπQL=δÞ−M, and BðωÞ¼YðωÞe−iβ2ω2L=2−XðωÞ. The
function BðωÞ is proportional to the difference of the

YðωÞ and the solution ψ ð0Þ
ω ðLÞ of Eq. (1) with γ ¼ 0,

η ¼ 0, and the boundary condition ψωð0Þ ¼ XðωÞ;
therefore, Pð0Þ

ðγÞ ½YðωÞjXðωÞ� is the Gaussian distribution

of functions around ψ ð0Þ
ω ðLÞ in functional space. It is

easy to see that Pð0Þ
ðγÞ ½YðωÞjXðωÞ� is normalized asR

DYPð0Þ
ðγÞ ½YðωÞjXðωÞ� ¼ 1. This means that all corrections

in γ are normalized here to satisfy the conditionR
DYPðn≠0Þ

ðγÞ ½YðωÞjXðωÞ� ¼ 0.
The higher-order corrections in γ can be calculated in

any order from Eq. (7) (see the Supplemental Material [14]
for details). As an example, we write down here the first
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order correction Pð1Þ
ðγÞ ½YðωÞjXðωÞ�. Using the procedure

described in the Supplemental Material [14] we obtain

Pð1Þ
ðγÞ ½YðωÞjXðωÞ� ¼ Pð0Þ

ðγÞ ½YðωÞjXðωÞ�Im
(
WL
3π

Z
dω
2π

× e−iβ2ω
2L=2YðωÞX̄ðωÞ þG

)
; ð10Þ

G¼ 2

Q

Z
L

0

dz
L

Z
dωdω1dω2

ð2πÞ3 eμzBðωÞλ̄ω1
ðzÞλ̄ω2

ðzÞλω3
ðzÞ;

λωðzÞ¼XðωÞþzBðωÞ=L: ð11Þ
Here μ ¼ iβ2ðω − ω1Þðω − ω2ÞL. The result contains two
different terms: the first one is proportional to the band-
width W and does not involve the parameter Q, the other
one (function G) has Q in the denominator. Therefore, in
this limit (small γ) of the perturbation theory the noise
parameter Q is assumed to be not too small. In physical
terms this is the limit of a weakly nonlinear and highly
noisy system.
In the different and practically important limit of small ϵ

or Q (large SNR) the conditional probability can be
computed using a method similar to the one used to
calculate the classical trajectory in quantum mechanics
[21]. In simple terms, this corresponds to finding the
solution without the noise term and making a functional
expansion around this solution due to the small noise
(high signal-to-noise ratio). In the case under consideration
we can use Laplace’s method, see, e.g., Ref. [22]. The main
contribution to the path integral in Eq. (2) gives the region

around the trajectory where the action S½ψ � reaches the
minimum. Let S approach the minimum at the trajectory
ΨωðzÞ; Eq. (2) can be rewritten in the following form:

P½YðωÞjXðωÞ�¼e−S½ΨωðzÞ�=Q

×
Z

~ψωðLÞ¼0

~ψωð0Þ¼0

D ~ψe−fS½ΨωðzÞþ ~ψωðzÞ�−S½ΨωðzÞ�g=Q:

ð12Þ

The explicit form of the path integral is shown in Ref. [15].
Thus, the problem of calculation of the conditional prob-
ability reduces to finding the function ΨωðzÞ and calcu-
lation of the path integral with zero boundary conditions.
We would like to emphasize once more the important
difference of the proposed approach and the direct
Monte Carlo modeling of the NLSE with different real-
izations of noise. In the path-integral method we can
constructively compute the probability density function
for an arbitrary received signal YðωÞ, even for a PDF with
very rare events, while in the direct modeling of the NLSE
it might be practically impossible to find trajectories with
low probability that still can be important for system
performance. Now we calculate the conditional probability
in leading orders in Q.
To calculate the path integral we expand the expression

in the exponent in the path integral at small ~ψ to the series
in ~ψ . Since S reaches the minimum at ΨωðzÞ, the series
starts from second order in ~ψ . To calculate the path integral
in leading order in Q we keep terms only in the main order
in ~ψ in the series. Then, we calculate the integral using the
perturbation theory in γ developed in Ref. [15], and obtain
the result in leading and next-to-leading order in γ,

P½YðωÞjXðωÞ� ≈ Λe−S½ΨωðzÞ�=Q
�
1þ 2γW

π
Im

�Z
L

0

dz
zðL − zÞ

L

Z
dω
2π

Lð0Þ½ΨωðzÞ�Ψ̄ωðzÞ
��

: ð13Þ

It is seen that in order to calculate P½YðωÞjXðωÞ� we first have to determine the function ΨωðzÞ (classical trajectory). The
action approaches the minimum at ΨωðzÞ; therefore, δS½Ψ� ¼ 0, where δS is a variation of S. This last equation leads to the
following equation for ΨωðzÞ (analogue of a classical trajectory):

�
∂z − i

β2ω
2

2

�
2

ΨωðzÞ − iγ
Z

dω1dω2

ð2πÞ2
�
4Ψω2

ðzÞΨ̄ω3
ðzÞ

��
∂z − i

β2ω
2
1

2

�
Ψω1

ðzÞ
�
−
μ

L
Ψω1

ðzÞΨω2
ðzÞΨ̄ω3

ðzÞ
�

− 3γ2
Z

dω1dω2dω4dω5dω6

ð2πÞ4 δðω1 þ ω2 þ ω4 − ω5 − ω6 − ωÞΨω1
ðzÞΨω2

ðzÞΨω4
ðzÞΨ̄ω5

ðzÞΨ̄ω6
ðzÞ ¼ 0; ð14Þ

with the boundary conditions Ψωð0Þ ¼ XðωÞ, ΨωðLÞ ¼ YðωÞ. Equation (14) can be written in the time domain,
see Ref. [15].
Calculating the action S½ΨωðzÞ� up to first order in γ yields (see for details the Supplemental Material [15])

P½YðωÞjXðωÞ� ≈ Pð0Þ
ðγÞ ½YðωÞjXðωÞ�eγImfGg

�
1þ γWL

3π
Im

�Z
dω
2π

e−iβ2ω
2L=2YðωÞX̄ðωÞ

��
: ð15Þ
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Note that the exponent eγImfGg cannot be expanded at small
γ in the general case, since we have assumed here that the
parameter ϵ ≪ 1. However, when ~γ=ϵ ≪ 1 the result (15)

coincides with Pð0Þ
ðγÞ ½YðωÞjXðωÞ� þ γPð1Þ

ðγÞ ½YðωÞjXðωÞ�, as it
should. Equation (15) is the NLSE channel PDF in the limit
of small Q in leading order in γ.
Now, we illustrate the application of the derived general

PDF (valid for arbitrary input X), considering some
particular choices of initial signal. Let the signal in the
time domain have the form

XðtÞ ¼
XN
k¼−N

ckFðt − kTÞ; FðtÞ ¼ αe−t
2=2τ2 ; ð16Þ

where N ≫ 1 is the number of pulses in the information
pattern, ck ¼ eϕk , where ϕk is a value that is randomly
chosen from f0; iπ=2; iπ;−iπ=2g, FðtÞ is the waveform of
the carrier pulse, T is the time interval between pulses
(baud rate), and τ is a parameter related to the pulse width;
we assume here that τ ≪ T. The constant α defines the
signal average power Pave ¼ T−1

R
∞
−∞ F2ðtÞdt ¼ α2τ

ffiffiffi
π

p
=T.

In the frequency domain the initial signal is presented as

XðωÞ ¼
ffiffiffiffiffiffi
2π

p
ατe−ω

2τ2=2
XN
k¼−N

ckeiωkT: ð17Þ

Consider PDF distributions of ck assuming that the
received signal YðωÞ can be approximated as

YðωÞ ¼
�
XðωÞ þ

ffiffiffiffiffiffi
2π

p
ατe−ω

2τ2=2
XN
k¼−N

ρkeiϕkeiωkT

þ iγLϕnl(XðωÞ)
�
eiβ2ω

2L=2; ð18Þ

where the average nonlinear phase shift (rotation of the
phase, same to all pulses) is

ϕnl(XðωÞ) ¼
Z

dω1dω2

ð2πÞ2 Xðω1ÞXðω2ÞX̄ðω3Þ
1 − e−μ

μ
:

ð19Þ
This choice of YðωÞ implies that all coefficients ck are
changed to ~ck ¼ ck þ ρkei

~ϕk , which corresponds to cor-
ruption of the signal constellation points by noise and
(weak) nonlinear effects. For the sake of clarity in this
methodological Letter we imply that pulses do not broaden
large (jβL=τj ≪ T). Then, we can use property (46) of
Ref. [15] for the conditional probability. The substitution of
Eqs. (18) and (17) into Eq. (15) yields the following
conditional probability:

P½YðωÞjXðωÞ� ≈
YN
k¼−N

Pk; ð20Þ

Pk ¼ Λ1=ð2Nþ1Þ exp
�
−
PaveT
QL

ρ2k

�

×

�
1þ γWTLPave

3π
ρk sinð ~ϕk − ϕkÞ

�
: ð21Þ

One can see that the conditional probability of the whole
signal pattern is the product of conditional probabilities
for each pulse as it should be for noninterfering signals. Of
course, the general PDFs derived above do include pulse-
to-pulse interference that can be accounted for perturba-
tively. Since ~γ ≪ 1, Pk is the slightly deformed Gaussian
distribution. Of course, the result (20) is formally written
with excessive accuracy and should be used only in the
first order of the parameter ~γ ≪ 1,

P½YðωÞjXðωÞ�≈Λexp

�
−
PaveT
QL

XN
k¼−N

ρ2k

�

×

�
1þ γWTLPave

3π

XN
k¼−N

ρk sinð ~ϕk−ϕkÞ
�
:

ð22Þ

Note that we already took into account the overall phase
shift ϕnl(XðωÞ) in YðωÞ, see Eq. (18). We would like to
stress that Eq. (20), of course, is just a particular example
of using the general formulas for the NLSE PDF derived
above. In the general case, one can use either the PDF
[Eq. (7)] for numerical analysis with an arbitrary input
signal or expressions (10) and (15) for simplified numerical
or analytical analysis in practically important limits.
In conclusion, we have introduced a constructive method

for numerical computation of the conditional probability
for the nonlinear Schrödinger equation through multidi-
mensional integrals. We have developed an analytical
method for the conditional probability calculation for
nonlinear noisy fiber optic communication channels in
the case of weak nonlinearity and the arbitrary parameter
ϵ ¼ 1=SNR, which is the inverse signal-to-noise power
ratio. In the limit ϵ ∼ 1 we derived an equation for
calculating the conditional probability using the perturba-
tion theory in γ. In the limit ϵ ≪ 1 we have derived the
classical trajectory and developed a method similar to
finding the quantum corrections to the classical trajectory
in quantum mechanics. The path-integral method allows
one to constructively compute PDFs for any received signal
YðωÞ, even corresponding to very rare events, while in the
direct modeling of the NLSE it might be practically
impossible to find trajectories with such low probability.
We believe that our results might find various applications
ranging from statistical physics [23–25] to high capacity
optical communications [11,26]. The approach provides a
platform for optimization over initial signal distributions
that is of critical importance for computation of the
Shannon capacity of communication channels.
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