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ABSTRACT

Concentration of light into nanospots is greatly beneficial for heat assisted magnetic recording, biomedical imag-
ing and sensing, nanolasing, etc. We propose novel, all dielectric near field transducers, which allow focusing
light into a hot spot, much smaller than the wavelength without significant dissipative loss. Therefore, the detri-
mental thermal effects in heat assisted recording can be significantly reduced opening new venue in the magnetic
recording. In the proposed transducer electric field concentrates at the apex of the dielectric tip attached to the
resonator. Thus the electric field excited in the dielectric resonator is further amplified and concentrated due to
the dipole polarization of the tip.

1. INTRODUCTION

Concentration of the light into nanospots much smaller than the wavelength is the crucial problem for the
applications such as biomedical imaging and sensing, optical microscopy with single-molecule resolution,1 heat
assisted magnetic recording (HAMR),2 QED,3 nanolasing, etc. Until now, metal plasmonic nanoantennae or near
field transducers (NFT) have been used for this purpose.4,5 We propose novel, all - dielectric class of NFTs, which
allow focusing light into a hot spot, much smaller than the wavelength without significant dissipative optical
loss characteristic to the metal NFTs. Therefore, the detrimental thermal effects in HAMR can be significantly
reduced opening new venue in the magnetic recording.6–8 We consider an NFT in the form of the pumped
resonator, where the electric field concentrates at the apex of a tip attached to the resonator at a proper point
as it is shown in Fig. 1a.

2. MAGNETIC DIPOLE FIELD IN THE RESONATOR

The electromagnetic field is pumped in the magnetic Mie dipole resonances excited in the dielectric sphere of
the radius a.9 The sphere with permittivity ε = n2 is placed in the origin of the coordinates. The permittivity
of the outer space is chosen to be equal to one. The electromagnetic field oscillates with resonance frequency ω,
wave vector k = ω/c. We use the spherical symmetry of the problem to introduce the electric vector potential for
the inside field Ain

z = −E0 sin(u)/ [knuf(ua)] directed along z axis, where the dimensionless coordinate u = knr,

ua = kna, and the function f(u) = (sinu−u cosu)/u2; r =
√
x2 + y2 + z2. It is convenient to introduce spherical

coordinates {r, θ, ϕ} with z axis perpendicular to the plane of the Figs. 1 and 2. The electric and magnetic fields
inside the sphere are

Ein(r, θ, ϕ) = curlAin = E0 [f(u)/f(ua)] sin θ {0, 0, 1} , Hin(r, θ, ϕ) = curlEin/ik. (1)

The outside electromagnetic field is given by the vector potential Ae
z = E0 u

2
a exp [ik(r − a)] / [ku(n− iua)], where

the radiation boundary condition is imposed at the infinity:

Ee(r, θ, ϕ) = curlAe = E0 exp [ik(r − a)]
u2a(n− iu)

u2(n− iua)
sin θ {0, 0, 1} , He =

curlEe

ik
. (2)
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That is electric field in the magnetic dipole resonance circulate around z axis, which is perpendicular to the
figure plane.

The vector potentials Ain and Ae are chosen in such a way that the boundary conditions Ein
ϕ (a) = Ee

ϕ(a) = E0

and H in
r (a) = He

r(a) automatically accomplish. The third boundary condition H in
θ (a) = He

θ(a) gives the equation
for the resonance frequencies

ua cosua +
(
n2 − 1− in ua

)
sinua = 0. (3)

Substituting here the silicon red–infrared parameters n2 = εSi ' 1510,11 we obtain the roots u1 ≈ 3.01−0.1i, u2 ≈
6.16− 0.19i, u3 ≈ 9.33− 0.23 i, etc.

It follows from Eq. (3) that the first, second and third magnetic dipole resonances take place at the wavelength
λ = 900nm for the silicon micro particles with radii a ' 111, 228, and 345nm correspondingly. The Q factors
for the resonances equal to Q ∼= 14.5, 15.9 and 20.5 correspondingly. We use the electromagnetic field of the first
resonance to effectively illuminate the tip. For the refractive index n� 1 the resonance frequency and Q factor
estimate from Eq. (3) as um = πm

(
1− n−2 − iπmn−3

)
and Qm = n

(
n2 − 1

)
/(2mπ), m = 1, 2 . . ., where the

imaginary part stands for the radiative loss assuming that the absorption is small. Note the silicon refractive
index is not large enough and the analytical equations give semi-qualitative esteem only.

Our computer simulations, presented in Figs. 1,2, we performed in FEMLAB environment. The whole system
including tip, resonator, and waveguide have been surrounded by perfect matching layer (PML) sphere, which
radius is about 10a. The waveguide port, which is placed near the intersection of the dielectric waveguide and
the PML sphere, is used to launch the em wave in the waveguide, which in turn pumps the spherical resonator.
The length of the tapered waveguide waist was optimized in order to achieve maximum field intensity inside the
resonator. The maximum of the resonator field corresponds to the minimum amplitude of the reflected wave in
the waveguide.

Calculations are done for the silicon resonator operating in the red and near infrared spectral range (λ >
800nm) where the permittivity of Si ε ' 15 (see e.g.10,11); the ohmic loss is neglected as being much smaller
than the radiation loss. We assume, for simplicity, that the permittivity of the surrounding space is one. The
external field (r > a), which excites the tip, can be rewritten as

Eex = Ee
ϕ sinϕ, Eey = −Ee

ϕ cosϕ (4)

where the amplitude Ee
ϕ (see Eq. 2) is determined by em energy pumped in the resonator through the waveguide

shown in Fig. 1.

3. POLARIZATION OF A PROLATE BODY PLACED IN NONUNIFORM
ELECTROMAGNETIC (EM) FIELD

In the proposed NFT the dielectric beak is attached to the spherical resonator (Fig. 1). The nonuniform resonator
field, given by Eqs. (2),(4), excites the beak. We consider now one of a basic nanophotonics problem, namely,
the field distribution inside a prolate body of rotation, which is placed in a nonuniform em field. The axis of the
body of rotation is chosen as “y” axis. That is the body is a cylinder, which radius r depends on the coordinate
y. We find the internal electric field in the much elongated cylinder of the length 2b� r. The maximum radius
max[r(y)] ≡ g � b, and the body is assumed to be rather smooth, that is dr(y)/dy � 1. The end points of
the body are placed at y = ±b, corresponding to its length 2b. For example, the radius r of the elliptic cylinder
varies as

r(y) = g
√

1− (y/b)2, (5)

where b� g are semi-axes.

The cylinder is excited by the longitudinal field Ee(y) directed along y axis. The material of the cylinder is
characterized by permittivity ε = n2 or conductivity σ ≡ −iω(ε − 1)/4π. Full electric field Eb(y) is the sum of
the external field and the field induced by the electric current and charge

Eb(y) = Ee(y)− dΦ(y)

dy
+ ikAy(y), (6)
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Figure 1. a) NFT consisting of cylindrical waveguide (radius ρ), spherical resonator (radius a) and prolate ellipsoidal
nanotip; the diameter 5nm of the nanoparticle, hanging bellow the apex, corresponds to the area of the electric field
concentration; b) numerical simulation in FEMLAB environment of the magnetic field |H| [A/m], which is pumped in
the resonator through the waveguide (ρ = 107, a = 111nm, λ = 900nm). c) Electric field ln |E| [V/m] excites the tip of
length b = 130nm and small semi-axis g = 10nm; vertical waveguide orientation; d) the same but waveguide is inclined.

where Φ and Ay are scalar and vector potentials; k = ω/c. The transversal field, induced by the current
and charge, is neglected since we assume dr(y)/dy � 1. Then the electric current is given by the Ohm law
J(y) = πr2f(y)σEb(y); the correction for the skin effect equals to f(y) = 2J1(u)/u, where u = nkr(y) and J1 is
the 1st Bessel function. The electric potential Φ is produced by the charge, which is always distributed over the
surface of the cylinder. Let q(y) be the linear density of the charge, then the potential at the axis “y” is given
by the integral

Φ(y) =

b∫
−b

eik|y−y
′| q(y′) dy′√

(y − y′)2 + r(y′)2
. (7)

The most important singular part of the electric potential Φ(y) can be extract from the Eq. (7) in the following
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way

Φ(y) ≈ q(y)

b∫
−b

dy′√
(y − y′)2 + r(y′)2

+

b∫
−b

[
q(y′)eik|y−y

′| − q(y)
]

dy′√
(y − y′)2 + r(y′)2

≡ Φ0(y) + Φ1(y) (8)

To solve the first integral note that the term r(y′)2 < g2 in the square root is only important for |y − y′| < g.
We replace r(y′)2 by r(y)2 since it is assumed that dr(y)/dy � 1:

Φ0(y) ≈ q(y) log

(√
(b+ y)2 + r(y)2 + b+ y√
(b− y)2 + r(y)2 − b+ y

)
≈ q(y)

C(y)
;

1

C(y)
= ln

b2 − y2

r2(y)
� 1. (9)

Thus the electric potential linearly depends on the charge density in the logarithmic approximation. The integral
for potential Φ1(y) in Eq. (8) has no singularity at y = y′. Therefore the potential Φ1(y) gives only small
correction to Φ0(y). Yet, Φ1 can be important when b ≥ λ since the phase of Φ1 is shifted in respect to the
charge q(y) and, therefore, Φ1(y) gives the radiation loss.

Using the same approach we obtain the vector potential Ay(y) ≈ L(y)J(y)/c, where L(y) = C(y)−1 =
ln
[
(b2 − y2)/r2(y)

]
, is the linear inductance, c – speed of light. We substitute the potentials Φ0 and Ay in the

Ohm law, use the charge conservation iωq = dJ/dy and obtain close equation for the electric current

J(y) = πr2f(y)σ

[
Ee(y)− 1

iω

d

dy

1

C(y)

d

dy
J(y) + ik

L(y)

c
J(y)

]
, J(±b) = 0. (10)

There is no problem to solve the above equation numerically and find the current J and internal field Eb =
J/(πr2f(y)σ) for any distribution of the external field Ee(y). Note that in the case of strong skin effect (Reσ →
∞) the expression in the square brackets in r.h.s. Eq. (10) vanishes, which corresponds to the well known antenna
equation.12,13

There is very important particular case of the prolate ellipsoid, when the local radius r(y) is given by Eq. (5),
and, therefore, the capacity and inductance do not depend on the position: C = 1/L = 1/ [2 ln (b/g)]. We
consider rather small ellipsoid b � λ and neglect, for simplicity, the skin effect and inductance. Then Eq. (10)
takes the form of the hypergeometric equation

(1− y1) y1
d2Eb

dy21
+ 2 (1− 2y1)

dEb

dy1
− (2 +D0)Eb +D0E

e(y1) = 0, (11)

where we use the dimensionless coordinate y1 = (1 − y/b)/2, D0 = 2/ [ny(ε− 1)], depolarization coefficient
ny = (g/b)2 ln(2b/g). The solution of Eq. (11), which is regular for 0 ≥ y1 ≤ 1, is given by the following equation

Eb(y1) = D2
0

[∫ y1

0

(1− t)tW (y1, t)E
e(t) dt+ Y (y1)

sin(απ)

π

∫ 1

0

(1− t)tY (t)Ee(1− t)dt
]
, (12)

where the Green function equals to

W (y1, t) = Y (y1)V (t)− Y (t)V (y1), (13)

where Y (y) and V (y) are two independent solutions of the homogeneous equation (11) when Ee = 0. The regular
solution

Y (y) =
sin(πα))

π(α− 2)(α− 1)

∞∑
n=0

Γ(n− α+ 3)Γ(n+ α)

n!(n+ 1)!
yn = F (α, 3− α, 2, y), (14)

is the standard hypergeometric function, where α =
(
3 +
√

1− 4D0

)
/2. The function V (y) in Eq. (13) is the

second solution of the homogeneous equation (11), which we choose in the following form

V (y) =
1

D0y
+ Y (y)(f0 + log y) + φ(y) (15)
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where f0 = 1−H2−α −Hα−1, Hn is the Harmonic Number of the order n; the function

φ(y) =
∞∑
n

[
H−α+n+2 + ψ(α+ n)− 2Hn −

1

n+ 1
+ γ

]
yn, (16)

where γ is the Euler constant, ψ(y) = d ln Γ(y)/dy is the polygamma function. The sum for φ(y) absolutely
converges for |y| < 1.

The equation for the internal field Eb is much simplified when the external field expands in the series Ee =∑m=n
m=0 Emy

m
1 . Then the internal field in the tip is the also polynomial Eb = D0

∑m=n
m=0 EmWm, where the

polynomial

Wm(y1) =
m! (m+ 1)!

Γ(4− a+m)Γ(1 + a+m)

k=m∑
k=0

Γ(3− a+ k)Γ(a+ k)

k! (k + 1)!
yk1 . (17)

For example, let us suppose that the external field approximates by third order polynomial Eb(y1) = Eb0 +
Eb1 y1 + Eb2 y

2
1 then Eq. (17) gives the internal field in the following form:

Eb(y1) =
D0

D0 + 2

[
Eb0 + Eb1

2 + (D0 + 2)y1
D0 + 6

+ Eb2
12 + y1(D0 + 2)(6 + y1(D0 + 6)))

(D0 + 6)(D0 + 12)

]
. (18)

In the case of the much elongated ellipsoid, when D0 � 1, the internal nonuniform field Eb(y) follows the
external nonuniform field Eb(y) ≈ Ee(y). Recall that above results have been obtained with so-called logarithmic
accuracy: we assume that not only b/g � 1 but also ln(b/g)� 1.

4. FIELD ENHANCEMENT AT THE APEX OF THE DIELECTRIC TIP

We consider the tip in Fig. 1 in the form of a prolate ellipsoid with semiaxes b and g � b. Note that the field
in a rectangular nanocelynder is less enhanced, as it is shown in Fig. 2b (black curve). The tip is placed in the
equatorial “x, y” plane (θ = π/2) with its longer axis parallel to y - axis as it is shown in Fig. 1. The center of
the tip is located on x - axis at the distance d from the center. For the thin tip g � a, the inside field

{
Ebx, E

b
y

}
can be estimated as the field in a prolate ellipsoid that is placed in the external field given by Eq. (1). The field
enhancement at the apex of the sharp dielectric tip can be understood as follows:14 the external driving field,
polarized along tip axis, drives the bounded electrons periodically forth and back along the tip shaft with the
same frequency as the exciting field. Because of the small surface area near the tip apex the uniform displacement
of the bounded electrons gives rise of a huge surface charge accumulation at the tip apex. These charges generate
a secondary field which is seen in Fig. 1 as enhanced field at the tip apex. The electric charges q(y) are induced
on the surface of the tip by the external inhomogeneous field Eey(y). When the external electric field Eey(y) is
expanded in a series Eey = Ee0 +Ee1y1 +Ee2y

2
1 + . . ., y1 = (1− y/b) /2, the field in the tip is also polynomial, as

it follows from Eq. (18). The internal field, extrapolated to the apex, equals to

Eby(b) =
D0

D0 + 2

[
Ee0 +

2Ee1
D0 + 6

+
12Ee2

(D0 + 6)(D0 + 12)
. . .

]
, (19)

For the elongated tip, where D0 � 1, the internal field close to the applied Eby ' Eey. The field, which is

perpendicular to the tip shaft, approximates as Ebx = Eex/[1 + nx (ε− 1)], where the transversal depolarization

factor equals to nx ∼= 1/2 for g � b. The electric field intensity Is at the surface of the tip Is(y) = ε2
∣∣Eb · nb∣∣2 +∣∣Eb − (Eb · nb)∣∣2 is shown in Fig. 2a, where nb is normal to the surface. The field intensity at the apex of the

tip estimates from Eqs. (4) and (19) as

Is (b) ' |E0|2
a4
(
d2ε2 + b2

) (
(b2 + d2)k2 + 1

)
((ak)2 + 1) (b2 + d2)

3 , (20)

where E0 (see Eq. 4) is the field at the surface of the resonator and k ' π/(na) is the resonance wavevector. For
n� 1 the tip intensity Is (b) achieves maximum value

Im ' |E0|2ε2(πa2/b2)2(a2/(π2b2) + ε−1)(a2/b2 + 1)−3 (21)
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for d ≈ a. The maximum intensity Im estimates for the silicon resonator with the resonance wavelength λr =
900nm, (ε ∼= 15) and geometric parameters a = 111nm, b = 150nm, g = 10nm as Im ≈ 20|E0|2 (see Fig. 1c).
The cascade enhancement of the electric field is being achieved: first, there is a resonance in the dielectric
resonator, then the resonant field is further amplified due to the tip polarization (c.f.15). The electric field just
outside the apex approximates as

I(y2) = Im [(2y2/ε+ 1) / (2y2 + 1)]
2
, (22)

where y2 = (y− b)/R > 0 and R = g2/b is the curvature of the tip at the apex. Electric field concentrates in the
sub-wave volume that scale ∼ R3 � g3 � λ3 (Fig. 2b) is of the same order or even smaller than in plasmonic
nanoantennae.16

The spherical silicon resonator, where the tip is protrude from, is pumped through the dielectric waveguide.
Hereby, we deliver the electric field to the apex without widespread exposure in contrast to ANSOM. We consider
the silicon cylindrical waveguide attached to the resonator as it is shown in Fig. 1d. To effectively pump the
resonator, we should match the impedances of the resonator Zr and waveguide Zw. The input impedance Zr is
defined by the equation [nr × [nr ×E0]] = Zr [nr ×H0], where E0 and H0 are the fields at the surface of the
resonator given by Eq. (2) and nr = −r/r is the inward normal. At the magnetic resonance Zr, remains the
same for any point at the surface and approximates as Zr ≈ 0.4 + 1.1 i for λr = 900nm.

When the radius ρ of the dielectric waveguide is sufficiently large ρkn > 1, the electromagnetic wave is well
confined inside. Then the waveguide impedance, calculated from the equation [nr × [nr ×Ew]] = Zw [nr ×Hw],
takes the value Zw = n−1 ≈ 0.252 6= Zr. There is no matching between the waveguide and the resonator so that
the reflectance Rw = |(Zw−Zr)/(Zw +Zr)|2 > 0.75. To decrease the reflectance Rw between the waveguide and
the resonator we decrease the waveguide radius. When the waveguide radius ρ decreases below the critical value

ρc = ν01/(k
√
n2 − 1), (23)

where ν01 is the first zero of the Bessel function J0, the phase constant estimates as

q ' k

√
1 +

4

(ρk)2
exp [− (n2 + 1) J0 (p) /(pJ1 (p))− 2γ], (24)

where γ is Euler constant, p = ρk
√
n2 − 1, J0(p) and J1(p) are the Bessel functions. Since q is exponentially

close to k the electromagnetic field spills out of the waveguide and spreads over all the space. In this case, the
waveguide impedance Zw depends on the coordinates and takes almost any values in the plane perpendicular to
the waveguide axis. We optimize the position of the resonator in respect to the waveguide to achieve maximum
field in the resonator. For λ = 900nm we match the resonator and the waveguide by introducing a tapered
waveguide waist, with a radius ρw = 65nm < ρc and length 9nm reducing the reflectance Rw < 0.1 (Fig. 1a,c).
That is almost all external power W is pumped into the resonator, where the electric field intensity of |E0|2 is
increased Q times in respect to the pumped field. The resulting intensity enhancement G at the tip apex could
be as large as G ∼ Qε2a6/(a2 + b2)3 � 1.

5. CONCLUSIONS

In conclusion, we propose to use the phenomenon of the resonance in the specially designed cascade dielectric
structures to obtain strong field enhancement in a nanospot. Our NFT can be made from any transparent
optically dense dielectric material. The huge field concentration is achieved without energy loss in the metal
particles. For the practical application the two-dimensional design could be more preferable. Our computer
simulations show that the dielectric edge, which is protruded from cylinder resonator, can also concentrate the
em field. The designed systems could be used for heat assisted recording, nano sensing, local TERS and many
other applications. Energy power released in a hotspot can be increased if the hotspot is a grain made of
appropriate plasmonic material18 possessing the surface resonance.

Proc. of SPIE Vol. 9544  954415-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/18/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



a)

¡El, Ulm

350

300

250

200

150

100

50

1`i() nm

200 um

250 nm

cylinder

IE`I

150 200

cl

6

154

3

2

1

0

250 y, nm

b)

Figure 2. a) Dielectric tip guides electric field, a = 111nm, λ = 900nm; b) |E|–field profile along axis of the ellipsoidal
tips of various length b, the apex curvature R = 1nm; external Ee–field and its tangent projection Ee

y in absence of the
tip are also shown; note the internal field |E| equals to applied field Ee

y, whereas it reduces near the end of cylindrical
tip; c) tip heats 2nm nanoparticles made out of magnetic alloy FePt;17 heat production inside central magnetic particle
is 1.4 times larger than in its neighbors.
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