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THEORY OF A RANDOM FIBER LASERI. V. Kolokolov a*, V. V. Lebedev a**, E. V. Podivilov b, S. S. Vergeles aaLandau Institute for Theoretial Physis, Russian Aademy of SienesbInstitute of Automation and Eletrometry, Siberian Branh of Russian Aademy of SienesReeived July 3, 2014We develop the theory explaining the role of nonlinearity in generation radiation in a �ber laser that is pumpedby external light. The pumping energy is onverted into the generating signal due to the Raman satteringsupplying an e�etive gain for the signal. The signal is generated with frequenies near the one orrespondingto the maximum value of the gain. Generation onditions and spetral properties of the generated signal areexamined. We fous mainly on the ase of a random laser where re�etion of the signal ours on impurities ofthe �ber. From the theoretial standpoint, kinetis of a wave system lose to an integrable one are investigated.We demonstrate that in this ase, the perturbation expansion in the kineti equation has to use the losenessto the integrable ase. Contribution for the JETP speial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141201531. INTRODUCTIONWe onsider the theory of random �ber lasers. Theonept of random lasers exploiting multiple satteringof photons in an amplifying disordered medium in orderto generate oherent light without a traditional laserresonator has attrated muh attention in reent years.This researh area lies at the interfae of the fundamen-tal physis of disordered systems and laser siene. Theidea of a random laser was originally proposed in theontext of astrophysis in the 1960s by V. S. Letokhov,who studied sattering with �negative absorption� ofthe interstellar moleular louds. Researh on randomlasers has developed into a mature experimental andtheoretial �eld. A simple design of suh lasers wouldbe promising for potential appliations.In traditional random lasers, the properties of theoutput radiation are typially haraterized by om-plex features in the spatial, spetral, and temporal do-mains, making them less attrative than standard lasersystems in terms of pratial appliations. Reently, aninteresting and novel type of random lasers that operatein a onventional teleommuniation �bers without any*E-mail: kolokolov�itp.a.ru**E-mail: lebede�itp.a.ru

predesigned resonator mirrors was demonstrated. Thefeedbak required for laser generation in the random�ber laser is provided by Rayleigh sattering from theinhomogeneities of the refrative index that are nat-urally present in silia glass. In the proposed laseronept, the randomly baksattered light is ampli�edthrough the Raman e�et, providing distributed gainover distanes up to 100 km. Although an e�etivere�etion due to the Rayleigh sattering is extremelysmall, the lasing threshold may be exeeded when asu�iently large distributed Raman gain is supplied.The random distributed feedbak �ber laser has anumber of interesting and attrative features. The �berwaveguide geometry provides transverse on�nement,and the e�etively one-dimensional random distributedfeedbak leads to the generation of a stationary beamwith a narrow spetrum. The random distributed feed-bak �ber laser has e�ieny and performane that areomparable to and even exeed those of similar onven-tional �ber lasers. The key features of the generatedradiation of random distributed feedbak �ber lasersinlude a stationary narrow-band ontinuous modelessspetrum that is free of mode ompetition, nonlinearpower broadening, and an output beam with a Gaus-sian pro�le in the fundamental transverse mode (gener-ated both in single-mode and multi-mode �bers). De-tails of the random laser performane an be found inreent review [1℄.1295
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z = 0 z = LSheme illustrating arrangement of a �ber laser2. BASIC DYNAMIC EQUATIONSThe random �ber laser is a piee of optial �ber oflength L that is optially pumped from the �ber ends.As a result, randomly baksattered light in the �beris ampli�ed through the Raman e�et, and the systemstarts to lase at some level of the ampli�ation (seeRef. [1℄). Two eletromagneti waves propagating tothe right and to the left are generated in the �ber. Ashemati distribution of the generated waves along the�ber is presented in the �gure. Due to pumping, theiramplitudes inrease during the propagation and ahievemaxima near the ends of the �ber, before passing out-side the �ber. We stress that the nonlinear interationof the generated waves propagating to the right and tothe left is weak beause their maxima are ahieved atthe opposite ends of the �ber. Therefore, they an beonsidered independently.We begin with the dynami equation desribing theevolution of the envelope of the generation eletromag-neti �eld,  , over the evolution oordinate z withinthe �ber, at 0 < z < L, where L is the �ber length.The equation for the generation wave propagating inthe �ber to the right isi (�z � ĝ) = ��2t  + 2 j j2; (1)where t is the time,  is the Kerr nonlinear oe�ient,and � is the quadrati dispersion oe�ient. We on-sider the generation proesses high above the gener-ation threshold and therefore neglet noise terms inEq. (1). An equation analogous to Eq. (1) an be for-mulated for the signal propagating to the left, the onlydi�erene being in the sign of the derivative �z.The gain operator ĝ is determined by an interplay ofthe pumping and the attenuation of the signal. In thefrequeny domain, it is a frequeny-dependent fatorg = gRP (z)� �l;where gR the Raman gain oe�ient, P (z) is the powerof the pumping wave, and �l is the linear attenuationoe�ient in the �ber. The distribution of the pump-ing over the evolution oordinate z is de�ned by thefator P (z), whih is assumed to be known. The lasing

is realized for frequenies near the frequeny where thegain g ahieves a maximum. We take the frequenyas the arrying frequeny for the envelop  . Then weobtain g(!) = g0 �$!2; (2)whih is an expansion of the gain oe�ient near itsmaximum. Here, ! is the frequeny shift from the ar-rying frequeny. We note that above the generationthreshold, the ondition g0 > 0 has to be ful�lled.We stress that in reality, the power P of the pum-ping wave is dependent on the generation wave  : theyare related via the balane equation [1, 2℄. Therefore,the problem should be solved in two steps. First, wehave to solve the balane equations to �nd P (z). Then,P (z) an be involved in alulating  . Here, we on-entrate on the seond step.In a random �ber, almost all generated radiation isoupled out from the �ber end. Only a small part ofthe energy is re�eted bak via Rayleigh baksatteringproesses. Beause the amplitudes of generated wavesinreased during evolution, the sattering proess is ef-fetive only at the end of the �ber. This implies ane�etive initial ondition for the generation wave  +,propagating to the right, in terms the amplitude of thegeneration wave  �, propagating to the left. Formally,the initial onditions for the waves have the form +(0; t) = R̂l �(0; t); �(L; t) = R̂r(!) +(L; t); (3)where Rl and Rr are re�etion oe�ients on the leftend and on the right end of the �ber, de�ned in thefrequeny domain. They have di�erent !-dependenesin di�erent situations. In the ase of the random-�berlaser, jRj � 1. The re�etion smallness leads to theonlusion that the signal is weakly disturbed by there�etion, thus justifying onditions (3).The spetrum of the generated wave in the random-�ber laser is relatively broad (ompared to traditionallasers) and onsists of a high number of spetral ompo-nents near the arrying frequeny (see [1℄). The mainhallenge here is to desribe the in�uene of nonlinear-ity on the generation spetrum. For this, we use thestandard kineti approah dealing with averaged quan-tities. We assume that the dispersion length (��2)�1(where � is the spetral width) is small in ompari-son with the �ber length L. Then the harmonis withdi�erent frequenies possess essentially di�erent phasesand therefore, under averaging over a length larger thanthe dispersion length, the harmonis an be treated asapproximately independent.1296



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Theory of a random �ber laserThe main objet in the kineti theory is the pairorrelation funtionh (z; t1 + t) �(z; t1)i = Z d!2� e�i!tF (z; !); (4)where angular brakets mean averaging over a distanelarger than the dispersion length and ��� denotes om-plex onjugation. Due to the assumed time homogene-ity, the average in (4) depends solely on the time di�er-ene t and is independent of t1. However, in examiningreal �bers, it is useful to average over time (integrateover t1) to eliminate e�ets related to di�erent �utu-ations (noises) negleted in our formalism. We stressthat due to the z-dependene of the generation wave,the system is not homogeneous in spae, in ontrast tothe time behavior. The funtion F is no other thanthe spetrum of the generated signal. We note that thesignal intensity I an be expressed via the spetrum asthe integral I � hj j2i = Z d!2� F (!): (5)Boundary onditions (3) lead to the following rela-tions for the averages:F+(0; !) = jRl(!)j2F�(0; !);F�(L; !) = jRr(!)j2F+(L; !); (6)where F+ and F� orrespond to the respetive gener-ation waves propagating to the right and to the left.In what follows, we onsider the symmetri stationarysituation where Rl = Rr and F+(z) = F�(L�z). Thenwe obtain the onditionF (0; !) = jR(!)j2F (L; !); (7)for the signal propagating to the right. The onditionrelates values of the orrelation funtion F taken atdi�erent ends of the �ber.3. KINETICSWe assume weak nonlinearity of the system. Thena perturbation theory has to be developed to exam-ine nonlinear e�ets in the random laser. The startingpoint for the theory is the basi equation (1) for the en-velope  (z; t). We treat the nonlinear term in Eq. (1)as a perturbation and expand the solution of the equa-tion with respet to the nonlinearity. Then we use theexpansion for alulating average (4).Below, our aim is to derive a dynami equation forthe spetrum F . The equation enables analyzing the

form of the spetrum and its dependene on the sys-tem parameters. Our derivation is performed in thespirit of the derivation of the standard kineti equation[3, 4℄ for lassi waves. However, our system is loseto an integrable one beause at g = 0, the basi equa-tion (1) is the nonlinear Shrödinger equation, whihis ompletely integrable and has an in�nite number ofintegrals of motion. There are no kinetis in the sys-tem of waves desribed by the nonlinear Shrödingerequation [5℄. Therefore, the kinetis are related to thepresene of the gain term g, whih makes the situationabsolutely di�erent from the standard kineti equationand requires a onsistent derivation of the generalizedkineti equation.A formal solution of Eq. (1) an be written as (z; t) = Z dt0G(z; z?; t� t0) (z?; t0)� i2 �� Z dt0 zZz? dz0G(z; z0; t� t0) (z0; t0)j (z0; t0)j2; (8)where z? is an arbitrary point. Here,G(z; z0; t) = �(z � z0) Z d!2� �� exp24�i!t+ zZz0 dz00 (g + i�!2)35 (9)is the Green's funtion determining a linear response ofthe system to an external in�uene. Analogously, it ispossible to onsider the evolution �bakward� in z. Forexample, in the linear approximation, (z0; t0) � Z dt G(z; z0; t� t0) (z; t): (10)We now pass to obtaining an equation for the fun-tion F in (4). It follows diretly from Eq. (1) that�zF (z; !) = 2gF � i2 Z dt ei!t �� 
 (z; t) �(z; 0) �j (z; t)j2 � j (z; 0)j2�� : (11)Here, as above, the angular brakets denote averag-ing over a distane larger than the dispersion length.Equation (11) implies that both the gain g and theorrelation funtion F are slowly varying funtions atthe averaging length. We assume that ��2 � g0, andthen we an hoose the averaging length l muh smallerthan g�10 . In addition, the inequality $�2 � g0 hasto be satis�ed, whih is a manifestation of the spe-trum narrowness in omparison with the harateristi11 ÆÝÒÔ, âûï. 6 (12) 1297



I. V. Kolokolov, V. V. Lebedev, E. V. Podivilov, S. S. Vergeles ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014frequeny range of Raman sattering. Therefore, we ar-rive at the hain of the inequalities $�2 � g0 � ��2to be satis�ed for the validity of our theoretial sheme.The phase randomization aused by dispersion leadsto approximately Gaussian statistis of the �eld  sineit appears to be a sum of a large number of indepen-dent terms. Therefore, in alulating averages like (11),we an use the Wik theorem (that is, the presentationof the average of some produt of  �elds via its pairorrelation funtions). But applying the Wik theoremto the ombination in the right-hand side of Eq. (11)gives zero. Therefore, we have to take into aounta weak orrelation between di�erent harmonis ausedby nonlinearity. Tehnially, we must use the nonlinearontribution to  from Eq. (8), non(z; t) = � i2 Z dt0 zZ0 dz0G(z; z0; t� t0)�� Z dt1 G(z; z0; t1 � t0) (z; t1)�� ����Z dt2 G(z; z0; t2 � t0) (z; t2)����2 ; (12)where we substituted expression (10). The goal of thesubstitution is to express the variation Æ in terms of (z; t). Then averages in the right-hand side of Eq. (12)are expressed in terms of the funtion F (z; !) in (4).Using the Wik theorem, substituting expres-sion (9) and taking integrals over time, we obtain fromEq. (12) that(�z�2g)F = 2 Z d!1d!2d!3(2�)2 Æ(!+!1�!2 � !3)�� �ga FF2F3g2a +
2 + g F1F2F3g2 +
2 � 2gb FF1F3g2b +
2 � ; (13)where F = F (z; !), F1 = F (z; !1), and so on, and thefollowing notations are introdued:
 = �(!2 + !21 � !22 � !23);ga = g(!) + g(!2) + g(!3)� g(!1);gb = g(!) + g(!1) + g(!3)� g(!2);g = g(!1) + g(!2) + g(!3)� g(!):Equation (13) is a generalized kineti equation de-rived for interating waves in an unstable medium (dueto pumping). We see that in Eq. (13), the usual Æ-fun-tions (that ensure the wave vetor onservation) in theollision integral (right-hand side) are substituted byLorentzians, where the gain g is present. This is a man-ifestation of the system inhomogeneity in z aused by

the gain. Other properties of the generalized kinetiequation are lose to those of the usual wave kinetiequation. For example, the integral over ! of the ol-lision integral is equal to zero. This is a onsequeneof the wave ation (number of waves) onservation lawwhih is valid without gain.It is possible to substitute g ! g0 in the ollisionintegral beause we assume $�2 � g0 and the non-linear stage (where the ollision integral is relevant) isrelatively short. However, generally, we should keepthe term $!2 in the left-hand side of Eq. (13) sine itis relevant at the linear stage of wave evolution. As aresult, we arrive at the equation��z � 2g0 + 2$!2�F == 2 Z d!1d!2d!3(2�)2 Æ(! + !1 � !2 � !3)�� 2g04g20+
2 [FF2F3+F1F2F3�FF1F2�F!F1F3℄ ; (14)whih is a starting point for the subsequent analysis.In this paper, we examine the ase of relativelystrong dispersion (wide spetrum), when ��2 � g0(where � is the spetrum width). (The ase of a nar-row spetrum was onsidered in [2℄.) The inequality��2 � g0 means that we an pass to the limit of smallg in Eq. (13) or (14). However, we should be areful be-ause of the noted anelations. In the limit as g0 ! 0,the Lorentzian in the ollision integral (the right-handside of Eq. (14)) turns into a Æ-funtion of 
, thus a-quiring the form of the usual ollision integral [4℄. Butthe ollision integral vanishes in this limit. This is aonsequene of the omplete integrability of the one-dimensional nonlinear Shrödinger equation. The exis-tene of an in�nite number of integrals of motion leadsin this ase to the absene of kinetis in all orders innonlinearity [5℄.Therefore, we should go beyond the zeroth order ing0 (that gives the Æ-funtion) and keep the �rst orderin g0. Hene, we an neglet g0 in omparison with
 in the denominator in Eq. (14) and keep g0 in thenumerator to obtain(�z � 2g)F (z) = 2g02�2 �� Z d!1d!2d!3(2�)2 Æ(! + !1 � !2 � !3)�� (!2 + !21 � !22 � !23)�2 �� (FF2F3 + F1F2F3 � FF1F2 � FF1F3) : (15)We note the presene of a singular denominator inEq. (15). This does not lead to any divergene just1298



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Theory of a random �ber laserdue to the integrability (any divergene would meanthat the oe�ient at the Æ-funtion is nonzero). Thisequation is a starting point of subsequent alulations.As follows from Eq. (15), in the linear approxima-tion, Flin(z; !) / exp�2 Z dz (g0 �$!2)� : (16)This expression desribes the exponential growth of thesignal amplitude. Besides, relation (16) shows that inthe linear regime, the laser spetrum beomes narrowerfollowing the gain spetral shape g(!). If A > ��20 ,where A = R dz $ and �0 is the initial spetrum widthat z = 0, then the spetrum width � at the end of thelinear stage an be estimated as � � A�1=2. We notethat the spetral width in this ase does not depend onthe initial spetral width at z = 0.4. SOLUTIONThe right-hand side of Eq. (15) an be estimated asg0F (I=��2)2. We �rst analyze the ase where I �� ��2 at the end of the �ber. That means that theinequality is satis�ed everywhere beause I inreasesmonotonially as z inreases. The inequality I � ��2means that the linear term 2g in the left-hand sideof Eq. (15) is larger than the ollision integral (theright-hand side of the same equation). Then the leadingontribution to the F -evolution by the ollision integralis produed at the nearest-to-the-�ber-end interval ofthe length of the order of g�10 .To alulate the nonlinear (ollision) ontributionto F (L), we an use the linear law (16) (where theterm with $ an be negleted) to obtainF (z) = exp[2g0(z � L)℄F (L):Then in aordane with Eq. (15), the nonlinear or-retion to F an be written asFnon = 23�2 Z d!1d!2d!3(2�)2 Æ(! + !1 � !2 � !3)�� (!2 + !21 � !22 � !23)�2 �� (FF2F3 + F1F2F3 � FF1F2 � FF1F3) ; (17)where all funtions, F; F1; : : : , are taken at z = L.To ahieve a statistially steady state, we have tosatisfy relation (7). We assume here that the signalsattering is produed by impurities. Then the re-�etion oe�ient R depends weakly on the frequeny!, beause the impurity size is muh smaller than the

wavelength. In this ase, the only relevant parameteris � = jR!j2 � 1. Then it follows from Eq. (7)F (0; !) = �F (L; !): (18)To satisfy Eq. (18), we have to assume that the $-ont-ribution to the law (16) is small. Therefore,� exp0�2 LZ0 dz g01A = 1 + �; (19)where � � 1.Using relations (16), (17), and (19), we �nd fromthe ondition (18) that(��2A!2)F+ 22�2 Z d!1d!2d!3(2�)2 Æ(!+!1�!2�!3)�� 1(!2 + !21 � !22 � !23)2 �� [FF2F3 + F1F2F3 � FF1F2 � FF1F3℄ = 0; (20)where all funtions are taken at z = L and A = LR0 dz $.As follows from Eq. (20), the spetrum width is deter-mined by the balane of the terms in the left-hand side,that is, � =r �2A : (21)We note the smallness of � in �. Comparing di�erentterms in Eq. (20) we �ndI � ��3=2Aand I � �pA�3: (22)Hene, � / I1=3 in the regime.Equation (20) admits a self-similar substitutionF (L; !) = ��pA �� !�� ; (23)where� is determined by Eq. (21). Then Eq. (20) leadsto the universal form of the equation for the self-similarfuntion(x2 � 1)�(x) = Z dx2dx3(4�)2 �� ��2�3 + �1�2�3 � ��1�2 � ��1�3(x � x2)2(x� x3)2 ; (24)1299 11*



I. V. Kolokolov, V. V. Lebedev, E. V. Podivilov, S. S. Vergeles ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014where x1 = x2 + x3 � x. Numerial solution of theequation gives the normalization fatorZ dx �(x) � 23:8:We see from Eq. (22) that the spetral width � in-reases as the intensity I inreases. At some level ofpumping, I beomes of the order of ��2. For higherpumping levels, the lasing regime ompletely hanges.The regime requires a separate onsideration. Our pre-liminary analysis shows that in this regime, the relationI � ��2 is satis�ed during the nonlinear stage of thegeneration wave propagation (near the �ber end). Theresult needs an additional justi�ation.5. CONCLUSIONWe analyzed the signal spetrum of a �ber laser thatis pumped by external light (due to Raman sattering).We use a generalized kineti equation for the analysis.A peuliarity of the wave system under onsiderationis its loseness to the ompletely integrable ase of theone-dimensional nonlinear Shrödinger equation. We�nd a relation between the spetrum width and the in-tensity of the signal, that is haraterized by a powerlaw. We also establish exponential tails of the spetrum(with power-law orretions). The exponential hara-ter of the tails is ultimately aused by the frequenyonservation law, satis�ed due to homogeneity of thesystem in time. From the other side, our system isspatially inhomogeneous. However, the inhomogeneitywas assumed to be weak in omparison with the phasevariations aused by dispersion. The last ondition im-plies that the spetrum width has to be large enough.The opposite ase was analyzed in [2℄.It is instrutive to ompare our generalized equationwith the usual kineti equation for weak wave turbu-lene [4℄. The last one has two types of solutions: equi-librium solutions and �ux solutions, both with powerspetra. In our ase, the ollision integral is nonzero,beause it must be balaned by some additional termappearing due to the spatial inhomogeneity of the sys-tem. That leads to the existene of a z-dependent har-ateristi spetrum width. Formally, it is a onsequene

of the �loality� property of our ollision integral (it isdetermined by frequenies of the order of the externalfrequeny); the �loality� property is also harateristiof the ollision integral in usual weak wave turbulene.Another peuliarity of our system, distinguishing itfrom the traditional weak wave turbulene, is the nearlyintegrable harater of the system. Indeed, in the lead-ing approximation, the wave propagation through a�ber is desribed by the nonlinear Shrödinger equa-tion that is ompletely integrable. The wave kinetis inthe integrable ase are absent [5℄. Therefore, the wavekinetis in our ase are related mainly to the spatialnonhomogeneity of the �ber aused by the gain (andthe relaxation). Therefore, we have to use the doubleperturbation theory, using weakness of both the nonlin-earity and the nonintegrability. That is why the result-ing wave kinetis appear to be essentially di�erent fromthose in the traditional weak wave turbulene: insteadof a power-law spetrum, we arrive at exponential tailsin the spetrum.Our preditions are in good agreement with experi-mental observations. The omparison will be publishedelsewhere.We thank S. A. Babin, D. V. Churkin, and S. K. Tu-ritsyn for numerous helpful disussions and the ex-plainations of the experimental situation.REFERENCES1. S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vat-nik, M. Nikulin, and E. V. Podivilov, Phys. Rep. 542,133 (2014).2. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kab-lukov, and E. V. Podivilov, J. Opt. So. Amer. B 24,1729 (2007).3. E. M. Lifshitz and L. P. Pitaevskii, Physial Kinetis,Pergamon, Oxford (1981).4. V. E. Zakharov, V. S. Lvov, and G. Falkovih, Kol-mogorov Spetra of Turbulene I, Springer, New York(1992).5. V. E. Zakharov, Studies Appl. Mathem. 122, 219(2009).
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