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Effects of thin film and Stokes drift on the generation of vorticity by surface waves
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Recently a theoretical scheme explaining the vorticity generation by surface waves in liquids was developed
[Phys. Rev. Lett. 116, 054501 (2016)]. Here we study how a thin (monomolecular) film presented on the surface
of liquid affects the generated vorticity. We demonstrate that the vorticity becomes parametrically larger than for
the case of liquid with a free surface, and the parameter is the quality factor of surface waves up to numerical
factor. We also discuss the PIV experimental scheme intended to observe the generated vorticity and find that
Stokes drift influences the measured velocity field. Explicit expression for the vertical vorticity was obtained.
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I. INTRODUCTION

Boundary layers between different environments are crucial
for biological, chemical, and physical processes due to extreme
conditions. For example, the sea surface is believed to play an
important role in the origin and earlier evolution of life on the
Earth [1]. The sea-surface microlayer is known to have a very
complex structure, and sometimes the most upper layer is a
monomolecular surface film formed by surfactant [2]. Here
we consider how such a thin film at a liquid surface modify
hydrodynamic motion. It is well known that the presence of a
film increases the damping of surface waves [3,4]. The history
of this phenomenon dates back to antiquity, when ancient
Greeks used oil to calm rough seas. The effect is related to
the film incompressibility that is correct for relatively slow
surface waves. The films are formed by insoluble agents and
therefore the film mass is conserved. That leads to the local
conservation law for the film density and, as a consequence,
to the additional hydrodynamic surface squeezing mode [5,6].
The squeezing mode is faster than the gravitational-capillary
waves, which justifies the incompressibility condition used at
analyzing the damping of these waves.

Recently, we have analytically established a mechanism of
the vertical vorticity generation by nonlinear interaction of
surface waves in slightly viscous liquid with a free surface [7].
The velocity of the surface flow associated with the vertical
vorticity can be estimated as v ∼ ωkh2, where k is the
wave vector, ω is the wave frequency, and h is the wave
amplitude. Remarkably, the velocity does not depend on the
viscosity of liquid, although the surface flow is produced by
the viscous mechanism. The situation is different in another
but similar system of freely suspended thin smectic film,
performing transverse oscillations in an air environment [8].
The presence of the film changes the boundary conditions for
the hydrodynamic motion. To satisfy the boundary condition
posed at the film, the nonpotential contribution to the velocity
field arising due to viscosity must be of the order of potential
one, while the contribution is suppressed in the case of liquid
with free surface. As a result, nonlinear interaction leads to the
enhancement of velocity associated with the vertical vorticity
up to the value v ∼ ωκh2, where 1/κ = √

νa/ω is a thickness
of boundary viscous sublayer and νa is an air kinematic vis-
cosity. Let us stress that now the velocity depends on viscosity.
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In the present paper we study the generation of vertical
vorticity by surface waves in liquids, when a thin film is present
at the surface—the combination of two aforementioned cases.
We consider only films of negligible thickness (monomolec-
ular), which can be formed, e.g., due to contamination of
the ocean surface. The boundary conditions for the bulk
flow are changed in comparison with the free surface case,
and the nonpotential part of the oscillating flow is as large
as in the case of freely suspended smectic films. Thus, for
the surface waves of the same amplitude the generated vorticity
in the contaminated case becomes parametrically larger than in
the free surface case. We establish the dependence of vertical
vorticity on the wave spectrum, obtain the explicit formula for
it in terms of surface elevation, and make several quantitative
predictions, which can be checked experimentally. All results
are compared with the cases of free surface liquids and freely
suspended smectic films.

The easiest way to measure the vorticity is to use the particle
image velocimetry (PIV) method; see, e.g., Refs. [7,9,10].
However, the technique does not allow us to obtain surface
vorticity itself. The particles floating on the surface should
be treated as Lagrangian markers, which move not only
horizontally, but also in a vertical direction with the surface.
This vertical motion leads to the correction in measured
velocity associated with the Stokes drift [11]. When analyzing
the surface solenoidal currents one should take into account
the effect upon treatment of the experimental data. We find the
correction and show that it just changes the amplitude of the
vorticity, keeping its spatial structure the same. The results are
of great importance for experimentalists.

II. BASIC EQUATIONS

We consider the bulk motion of a liquid, which obeys the
Navier–Stokes equation [3,4]

∂tv + (v∇)v = −∇P/ρ + ν∇2v, (1)

where ρ and ν are the liquid mass density and the kinematic
viscosity coefficient, respectively, v is the liquid velocity,
and P is pressure. Equation (1) has to be supplemented by
the incompressibility condition div v = 0. The straightforward
calculations lead to the equation for vorticity � = curl v,

∂t� = −(v∇)� + (�∇)v + ν∇2� . (2)

One should also supplement the Navier–Stokes equation (1)
by the boundary conditions posed at the liquid surface. First,
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it is the kinematic boundary condition [3]

∂th = vz − vx∂xh − vy∂yh, (3)

implying that the liquid surface moves with the velocity v.
Here and thereafter we assume that the axis Z is directed
vertically, opposite to the gravitational acceleration g and that
the equilibrium liquid surface coincides with plane z = 0. The
deviations from the equilibrium shape are described by the
elevation h(t,x,y), i. e., the liquid surface is determined by
the equation z = h(t,x,y). Note that the pressure P in the
Navier–Stokes equation (1) includes the gravitational term:
P = p + ρgz, where p is the internal pressure.

There is also the dynamic boundary condition that can be
obtained from the requirement of zero momentum flux through
the liquid surface. In the presence of a film on a liquid surface
one has to take into account inhomogeneity of the surface
tension coefficient σ (t,x,y) related to its dependence on the
film thickness. Therefore, the boundary conditions at a liquid
surface z = h are modified in comparison with the free surface;
see e.g., Ref. [4]. They are

P − 2ρνli lk∂ivk = ρgh + σ (∇ l), (4)

ρνδ⊥
ij lk(∂jvk + ∂kvj ) = δ⊥

ij ∂jσ. (5)

Here l(t,x,y) = (−∂xh, − ∂yh,1)/
√

g is the unit vector nor-
mal to the surface, g = 1 + (∇h)2 can be thought as the
determinant of the film metric tensor, and δ⊥

ij = δij − li lj
is a projector operator on a film surface. The vorticity
	i = εijk∂j vk should satisfy the boundary condition, which
follows from Eq. (5):

lmlk∂k	m + (∂ivk + ∂kvi)εimnlmKkn = 0, (6)

where εijk is the unit antisymmetric tensor and we have
introduced the curvature tensor Kik = Kki = (δij − li lj )∂j lk .
Note that the gradient of the surface tension drops from the
boundary condition (6).

To close the system of equations we need to know the
dependence of surface tension σ on the film density per
unit area n. Moreover, since we have a new variable n, we
should write down an additional equation. This is the mass
conservation law for the film density [6]:

∂t (
√

gn) + ∂α(
√

gnvα) = 0, (7)

where the value of velocity field should be taken at the liquid
surface z = h. Here and below Greek indices run over x and
y. The quantity

√
gn is a projection of the film density on the

X-Y plane. Equation (7) can be rewritten as

(∂t + v∇) ln n + δ⊥
ij ∂ivj = 0, (8)

where the relation (3) was exploited.

III. LINEAR APPROXIMATION

Further, we consider the case where some surface waves
are excited in the liquid. The case of deep water is implied.
We assume that the wave steepness is small, i.e., |∇h| � 1.
We also assume that the waves are weakly decaying, i.e., γ =√

νk2/ω � 1, where ω is the wave frequency and k is its wave
number.

Upon examining the hydrodynamic motion the film can
be treated as incompressible in the linear approximation [4],
since the surface area of the film is changed only in second
order in |∇h| � 1. Therefore, we arrive at the surface
incompressibility condition posed at z = 0

∂αvα = 0, ∂zvz = 0, (9)

where we have used the three-dimensional incompressibil-
ity condition ∇v = 0. Formally, the conditions (9) can be
obtained from Eq. (8) after neglecting nonlinear terms and
the time derivative. Let us establish the corresponding cri-
terion. It follows from Eq. (5) that δσ ∼ ρνv. Therefore,
δn ∼ (∂σ/∂n)−1ρνv and we arrive at the condition

ωρν � kn∂σ/∂n. (10)

In the linear approximation, all quantities characterizing
the surface waves can be expressed via the surface elevation h.
The explicit expressions for velocity and vorticity to leading
order in parameter γ are

vα = ν
κ̂(κ̂ + k̂)

k̂
(ek̂z − eκ̂z)∂αh, (11)

vz = ν(κ̂ + k̂)(κ̂ek̂z − k̂eκ̂z)h, (12)

	α = εαβ

κ̂ + k̂

k̂
eκ̂z∂β∂th + O(γ 2), (13)

where we introduced nonlocal operators k̂ = (−∂2
x − ∂2

y )1/2,

κ̂ = (∂t/ν + k̂2)1/2. The first terms on the right-hand sides of
expressions (11) and (12) correspond to the potential part of
velocity, whereas the last terms represent corrections, arising
due to viscosity. The vorticity 	α is located in a relatively thin
layer near the surface. The depth of the layer is estimated as
γ /k � 1/k, where 1/k is the penetration depth of the potential
velocity.

The presence of film does not change the dispersion law of
surface waves, ω2 = gk + (σ0/ρ)k3, except for the change in
σ0—an equilibrium value of surface tension σ . However, the
wave damping is larger than in the clean case:

Im ω

ω
= γ

2
√

2
. (14)

Formally, it happens because, to satisfy the boundary condi-
tion (9), the viscous contribution to the velocity field should
be of the order of potential one, see Eqs. (11) and (12), while
in the free surface case the viscous contribution is smaller in
parameter γ ; see, e.g., Ref. [7]. Nevertheless, let us stress that
the waves attenuate weakly due to the condition γ � 1.

Note that the result (14) can be found in Ref. [4] for
capillary waves. For these waves the criterion (10) reads as
νσ 1/2ρ1/2k1/2 � n∂σ/∂n.

IV. NONLINEAR MECHANISM

Principally, there is a second-order contribution in ∇h to
δn. Then the first term in the boundary condition (8) could
be relevant for examining nonlinear effects. However, the
contribution is irrelevant for the subsequent analysis, because
the film density n and the surface tension σ do not enter in the
boundary condition (6).
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Thus, the generation mechanism of vertical vorticity is the
same as in the free surface case [7], except the change in the
velocity field; see Eqs. (11) and (12). To find the Z component
of the vorticity, 	z, we should solve the equation

(
∂2
z − κ̂2

)
	z = −ν−1	α∂αvz, (15)

supplemented by the boundary condition

∂z	z = ∂αh∂z	α − εαγ (∂αvβ + ∂βvα)∂β∂γ h (16)

posed at z = 0 and 	z → 0 at z → −∞. The relation (16)
is just Eq. (6) written up to second order in ∇h. By using
Eqs. (11)–(13), we find a solution:

	z(z) = εαβ

(
eκ̂z κ̂

k̂
∂β∂th

)
(ek̂z∂αh)

+ εαβ

2
κ̂−1eκ̂z

[
(∂β∂t k̂

−1h)(κ̂ k̂∂αh) − κ̂

k̂
∂βh∂α∂t k̂h

]
. (17)

Here the first term represents the tilt of the vorticity (13) due
to the surface tilt and the other term is the result of rotated
vorticity spreading into the bulk.

Since we consider the nonlinearity of the second order, the
characteristic frequency ωv of vorticity 	z can vary from zero
to the order of the surface wave frequency ω. If ωv 	 νk2

then the first term in the expression (17) is leading, otherwise
both terms are of the same order. Furthermore, we assume
ωv � νk2, then one can substitute κ̂ by k̂ in the prefactor
before brackets in the second line of Eq. (17). So, the first
contribution on the right-hand side of Eq. (17) is localized on
the scale γ /k near the surface, while the second contribution
penetrates deeper, on a distance 1/k.

Let us consider the case of monochromatic pumping, when
the absolute value of the wave vector is fixed. The expression
for the slow vorticity (ωv � νk2) at a liquid surface can be
simplified and takes the form

	z(0) = εαβ

(
κ̂

k̂
∂β∂th

)
∂αh + εαβ k̂−1(κ̂∂αh∂β∂th). (18)

To illustrate the relation we consider the case of two plane
waves, propagating perpendicular to each other. Then the
surface elevation can be modeled as

h = H1 cos(ωt − kx) + H2 cos(ωt − ky), (19)

and substituting this expression into Eq. (18), we obtain

	z(0) = −
√

2 + 1

2γ
H1H2ωk2 sin(kx − ky). (20)

Note that the presented theory is correct if the higher-order
nonlinear terms are small compared with the kept ones. We
should estimate the nonlinear terms by using Eq. (2), where
the second-order terms for the velocity, v(2), have to be taken
into account. From Eq. (18) we find v(2) ∼ ωkh2/γ . Therefore,
the nonlinear terms with v(2) are small if (v(2)∇)	z � ν�	z.
Thus, in the case ωv � νk2 we arrive at the condition
kh � γ 3/2, which is stronger than the weak steepness con-
dition kh � 1.

V. STOKES DRIFT

Now we analyze the motion of passive particles placed
on a liquid surface and advected by the generated surface
currents (18). Examining the trajectories of such particles is
a natural way to observe and detect the generated vorticity.
However, one should be careful upon treatment of the experi-
mental data, because particles move not only horizontally, but
also in a vertical direction with respect to the surface. And this
vertical motion leads to the correction in measured velocity
field associated with the Stokes mechanism [11].

The position of each particle can be characterized by a two-
dimensional vector X = (X,Y )T , which obeys the equation of
motion:

d X
dt

= u(t,X), (21)

where u(t,X) ≡ v(t,X,h(t,X)) is horizontal velocity at a
liquid surface. Near some point x0 = (x0,y0)T we can expand
the velocity field in a Taylor series:

u(t,x) = u(t,x0) + Ĝ · δx + · · · . (22)

Here δx = x − x0 and Ĝ is a velocity gradient tensor, its four
components are

Gαβ = ∂βuα(t,x0) = ∂βvα(t,x0,z)|z=h + ∂zvα(t,x0,h)∂βh.

(23)

Now we solve Eq. (21) up to second order in parameter
|∇h| � 1 by using an iterative method. The particle displace-
ment is δX = δX0 + δX1, where

δX0 =
∫

u(t,x0)dt, δX1 =
∫

Ĝ · δX0dt,

and we need to keep only linear terms in δX0 and Ĝ to
calculate δX1.

Experimentally, the velocity field is reconstructed accord-
ing to the definition δX/δt . To find δX one should process
consecutive images. If the time difference between these
images is much smaller than the wave period 2π/ω, we can
neglect the δX1 contribution and the velocity field captured by
the fast camera is just u(t,x). To obtain the stationary velocity
we should average the expression over time (over many pairs
of images). In principle, it is also possible to use a slow camera
for registration and capture only a slow motion. In this case,
the time difference between consecutive images must be a
multiple of the wave period 2π/ω, and we need to take δX1

contributions into account. For our particular case, due to the
boundary condition (9), one finds δX1 = 0 and therefore the
reconstructed velocity field will be the same.

To calculate the vertical vorticity one should take
the curl from the reconstructed velocity, i.e., 	R =
〈εαβ∂αvβ(t,x,h(t,x))〉, where angular brackets denote aver-
aging over time. Up to the second order, we obtain

vβ(t,x,h) = vβ(t,x,0) + h∂zvβ(t,x,0), (24)

and then

	R = 	z(0) + 〈εαβ∂αh∂zvβ(t,x,0)〉. (25)

Here we drop a term h∂z	z(t,x,0), since it is of third order
in ∇h according to the boundary condition (16). The last term
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in expression (25) represents the correction to the previously
obtained vorticity (18), which is associated with the Stokes
drift. Use of Eq. (11) leads to a compact equation

	R = εαβ k̂−1(κ̂∂αh ∂β∂th). (26)

Finally, for the surface elevation given by the expression (19),
we find

	R = − 1

2γ
H1H2ωk2 sin(kx − ky). (27)

VI. DISCUSSION

Comparing the results (17) and (20) with ones obtained in
Ref. [7], we conclude that the vertical vorticity generation by
surface waves in the presence of a thin film at a liquid surface
is more effective than in the case of liquid with free surface for
surface waves of the same amplitude. The vorticity amplitude
is enhanced by the additional factor γ −1 = (ωk2/ν)1/2 	 1,
which is the quality factor of surface waves at the presence
of the film up to a numerical factor; see expression (14).
However, the quality factor is less than that for surface waves
in liquid with a free surface by the same factor γ . Thus, the
reverse side is that surface waves are excited less efficiently
in the presence of the film. In fact these two phenomena are
closely related to each other. Indeed, according to Eq. (15)
the source of vertical vorticity 	z is a horizontal vorticity
	α slightly rotated by the velocity field. The vorticity 	α is
determined by the nonpotential contribution to the velocity
field, and it contains an additional factor γ −1 due to the
boundary condition (9), when a thin film is presented at a liquid
surface; see Eq. (13) and Ref. [7]. Such parametric increase in
the horizontal vorticity leads to more effective generation of the
vertical vorticity 	z and simultaneously to the stronger wave
damping. We also would like to note that exactly the same
enhanced mechanism of vorticity generation takes place in
freely suspended thin smectic films, which perform transverse
oscillations [8]. But one needs to remember that this system
is very different in detail: transverse oscillations have another
dispersion law and the spatial structure of eigenmodes is more
complicated. So, the direct comparison with considered system
is not very meaningful.

The most probable experimental scheme intended to
observe the generated vertical vorticity 	z is to examine
trajectories of the passive particles placed on the liquid
surface [7,9,10]. Then one should take into account the
Stokes mechanism [11]. We showed that the Stokes drift
does not misrepresent the generated vorticity. Its influence
preserves the spatial structure and the sign of the vorticity,
only diminishing its amplitude; compare Eqs. (18) and (26). In
particular, the resulting surface motion of particles is described
by expression (27) for the two perpendicular plane waves.

Generally, a simple way to detect the surface flow associated
with 	z is to establish the direction of the motion of the
particles.

It is worth here to discuss the role of Stokes drift in the
case of a liquid with a free surface, where it turns out to be
similar. For the specific examples of a liquid elevation h(t,x,y)
considered in Ref. [7], the vorticity of Lagrangian-mean flow
produced by the Stokes mechanism at a liquid surface (both
discussed methods of velocity measurement give the same
result) has the same spatial structure as Eqs. (14) and (16) in
Ref. [7], but with the prefactor 2 + √

2 replaced by −1. Thus,
the resulting prefactor in the reconstructed vorticity 	R will
be 1 + √

2. Note that there is an misprint in Ref. [7]—the color
legends in Figs. 2 and 4 must be inverted. Taking into account
this error we obtain that the direction of motion of the particles
in Fig. 4 cannot be explained by the Stokes drift alone, since
this mechanism moves particles in the opposite direction. The
fact can be treated as evidence of the surface flow associated
with vertical vorticity.

Finally, we would like to note that capillary effects [12]
can also affect the velocity field reconstructed from the
motion of floating particles and they are also of great interest
for experimentalists. However, the consideration of capillary
effects is beyond the scope of the present paper.

VII. CONCLUSION

To summarize, we showed that the presence of a thin
film on a liquid surface parametrically increases the vertical
vorticity generated by surface waves in comparison with
the case of a liquid with a free surface. The parameter is
related to the quality factor of surface waves and an explicit
expression for vorticity in terms of surface elevation (17) was
obtained. The expression was analyzed for the simplest case
of two perpendicular plane waves (19) and some quantitative
predictions (20) were made.

Next, we analyzed the most probable PIV experimental
scheme intended to observe the generated vertical vorticity and
found that the Stokes mechanism should be taken into account
upon treatment experimental data. It leads to the correction
in measured velocity field, which was also calculated; see
Eqs. (25) and (27). We believe that obtained results allow us to
understand better the phenomenon of vorticity generation by
surface waves and will be of great interest to experimentalists
involved in this research.
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