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Abstract We theoretically examine plasmonic resonance

excited between two close metallic grains embedded into a

dielectric matrix. The grains sizes are assumed to be much

less than the wavelength of the electromagnetic wave in the

dielectric medium and the grain’s separation is assumed to

be much smaller than the grains sizes. A qualitative scheme

is developed that enables one to estimate frequency of the

plasmonic resonance and value of the field enhancement

inside the gap. Our general arguments are confirmed by

rigorous analytic solution of the problem for simplest

geometry—two identical spherical grains.

1 Introduction

Interaction of electromagnetic field with metallic grains

whose dimensions are smaller than the wavelength is a

subject of intensive experimental and theoretical interest

for a long time [1, 2]. Convex metal surface creates the

conditions for localized surface plasmon excitations, whose

resonance frequencies are below plasma frequency in

metal. The surface plasmon excitation can lead to a strong

enhancement in both light scattering and absorbtion near

the resonance frequency and is accompanied by a large

value of the electric field near a particle or a system of

particles [3].

Resent progress in nanofabrication has led to thriving

activity in the actual design of subwavelength structures

such as dimers [4–10] and arrays of metallic particles [11].

Optical properties of such objects are very different from

those of separate particles. The strongest field enhancement

occurs in gaps between closed metallic grains, scattering

and absorbtion increase compared to those for single

grains. The enhancement can reach sufficient values to

observe Raman detecting of single molecule [12, 13]

placed into the gap (see also [14] as a basic reading on

SERS). The resonance frequency is shifted in the sys-

tems, it is observed experimentally [8, 7] and numerically

[15–17] that the shift depends both on the polarization of

the incident light and on the inter-particle distance in

dimers or arrays. The red-shift of the resonance maximum

is observed when the electric field of the incident wave is

polarized along the axis of the dimer or array while the

blue-shift happens when the electric field is perpendicular

to the axis. The extent of the shift depends on the inter-

particle distance and the particle size.

The shift of the resonances can be observed, in partic-

ular, in so-called semi-continues metallic films [18–20],

see also [21]. The films are disordered systems which are

metallic grains placed on a dielectric substrate, with broad

distributions of sizes and/or inter-grain gap widths. The

distribution leads to existence of surface plasmon excita-

tions in the films for broad band of frequencies. Strong field

enhancement occurs only in part of the gaps for given

frequency of incident light, and the choice of the gaps

changes with the frequency. As an alternative, one can find

broad spectrum of surface plasmon frequencies in period-

ical systems [22] where selected range of eigen frequencies

corresponds to Brillouin zone.

The most commonly used metals for manufacturing

the grain systems are noble metals since their plasma
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frequency lies in the ultraviolet region and imaginary part

of the dielectric permittivity is small compared to the real

one in the optical region [23]. It is known [24] that the

plasmonic resonance in a single metallic grain is excited at

a frequency near the plasma one lying near the ultraviolet

spectral region for noble metals. To reach the resonance in

the optical or near-infrared diapason, one should use a

special geometry where metallic grains are separated by

distances much smaller than their size. The resonance

conditions imply, particularly, large negative dielectric

permittivity of the grains [15].

Here, we theoretically investigate the phenomenon,

considering particular case of two closed metallic grains.

We establish that the resonance conditions are related

mainly to the local geometrical characteristics of the gap.

The field enhancement is more sensitive to geometrical

factors controlling the energy flow to the gap. Our general

arguments are confirmed by a rigorous analytical solutions.

One can think about an extension of our results to periodic

and disordered metal–dielectric composites.

Theoretical explanation of the observed effects is diffi-

cult due to the fact that even the system of two particles is

too complicated for exact analytical approach. For mono-

chromatic fields (which we are considering), the system of

Maxwell’s equations leads to Helmholtz equation for both

electric and magnetic fields, which cannot be solved ana-

lytically for systems of two or more metallic particles.

However, in the systems under consideration the particles

sizes are of the order of tens of nanometers, which is

smaller than the wavelength (hundreds of nanometers), and

the quasi-stationary approach can be used. In this limit, the

Helmholtz equation is reduced to Laplace equation which

can be solved explicitly for a wider set of systems, and

particularly for the system of two metallic particles.

Namely one can separate variables in the so-called

bi-spherical reference frame [25–31]. In the work [26], the

problem of two spheres was approached in this way and the

resonance conditions have been found, however, the field

enhancement was not considered explicitly and some

extraneous solution were presented as to be physical

solutions. In this paper we utilize the same analytical

approach and find both the resonance conditions and the

field enhancement. In particular, we show the way how to

exclude the extraneous solutions. We also present a simple

qualitative explanation of the phenomenon allowing one to

estimate the field values by the order of magnitude.

The structure of the paper is as follows. In Sect. 2, we

give general theoretical relations enabling one to analyze

the electromagnetic wave propagation through the metal–

insulator composites and develop a scheme enabling one to

estimate parameters of the giant field enhancement in the

metallic dimer where grain’s sizes a are much smaller than

the wavelength in the dielectric matrix and the depth of the

skin layer in the metal and the grains are separated by a

narrow gap of width d; d� a: Section 3 is devoted to a

rigorous analytical investigation of the giant field

enhancement in the system of two close metallic spherical

grains. The obtained results confirm the estimates given in

the previous section and enable to extract all the numerical

factors for the particular geometry. Our main results are

outlined in Sect. 8 where also perspectives and unsolved

problems are discussed. Technical details of our calcula-

tions can be found in ‘‘Appendices’’. Some preliminary

results of the work were already published, see Ref. [25].

The results concerning two close grains of cylindrical form

were published in Ref. [32].

2 Basic relations

We consider the electromagnetic wave refraction on a

metal–insulator composite that is a system of metallic

grains embedded into a dielectric matrix. We consider

monochromatic wave with frequency x: The electric field

strength is written as Re½E expð�ixtÞ� where E(r) is a

(complex) field amplitude to be investigated. We assume

that both metal and dielectric have no magnetic properties

at frequencies we examine, so that their permeability can

be regarded to be equal to unity. Then the system is

characterized by the electric permittivity eðxÞ; which is the

function of the frequency and is different in the dielectric

matrix and in the metallic grains.

The electric permittivity of the dielectric edðxÞ is

assumed to be of the order of unity and to have negligible

imaginary part. We accept a local relation between the

electric field strength and the electric displacement field

D;D ¼ emðxÞE; in the metal grains. Here, em is the electric

permittivity of the metal. In optical and near-infrared

spectral regions, the permittivity of a noble metal can be

described by the Drude–Lorentz formula

em� �
x2

p

x2 þ ix=s
; ð1Þ

where xp is the plasma frequency and s is the electron

relaxation time. Therefore in the frequency interval

xp � x� s�1, the permittivity em has negative real part,

large by its absolute value, and relatively small imaginary

part. The same is true for the dielectric contrast e ¼ em=ed:

We examine the case where the metallic dimer (two

close metallic grains) is surrounded by an unbounded

dielectric medium. The grains are assumed to be small, that

is, their sizes are much less than the wavelength kd ¼
k=

ffiffiffiffi

ed
p

of the electromagnetic wave in the surrounding

dielectric medium and the depth of the skin layer in metal

k=
ffiffiffiffiffiffiffiffi

jemj
p

; where k in the wavelength in vacuum. We are
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investigating the electromagnetic field profile near the

dimer, especially in the gap between the grains, where one

expects an essential enhancement of the field. The problem

belongs to the so-called near-field optics. The electric field

E near the small metallic grains can be examined in quasi-

electrostatic approximation (see, e.g., Ref. [2]), in terms of

its potential U;E ¼ �gradU: Then the potential U has to

satisfy the equation

div½eðrÞ grad U� ¼ 0; ð2Þ

formally coinciding with the electrostatic equation for the

electric field potential in a non-homogeneous dielectric

medium.

The electric permittivity is assumed to be homogeneous

inside the grains and in the surrounding dielectric medium.

Then Eq. (2) is reduced to the Laplace equation

r2U ¼ 0; ð3Þ

in each of the regions. The Eq. (3) should be

complemented by boundary conditions at the interface

between the metal and the dielectric medium that are

continuity of normal component of the electric

displacement field and of the tangent components of the

electric field. In terms of the electrical potential U, the

conditions are reduced to continuity of the potential U and

to the relation between its normal derivatives on different

sides of the interface, their ratio should be equal to the

dielectric permittivity contrast e

onU
�

�

d
¼ eonU

�

�

m
: ð4Þ

We are interested in the electric field enhancement,

characterized by the ratio Ec=Eext; where Ec is the electric

field strength in the central segment of the gap between the

grains, and Eext is the electric field strength in the incident

electromagnetic wave. An essential enhancement has to be

observed near resonance frequencies, then there are two

principal contributions to the ratio,

Ec=Eext ¼ G=ðe� eresÞ þ Gbg; ð5Þ

that can be called resonance and background terms.

Expression (5) follows from the general properties of

Maxwell equations when all materials have linear electric

response. The quantity eres; as well as the factors G and

Gbg; are determined by geometry of the grains and by the

gap thickness. A maximum value of the enhancement is

observed at the resonance, e0 ¼ eres; then jEc=Eextj � G=e00;
where e0 and e00 are real and imaginary parts of the

dielectric contrast e (both are functions of frequency).

Thus, the electric field enhancement is restricted by energy

losses. The resonance frequency can be evaluated now

from expression (1), xres�xp=
ffiffiffiffiffiffiffiffiffi

jeresj
p

:

Pure real value of eres in (5) implies that energy losses

are determined primarily by the Ohmic dissipation in the

metal grains. Besides, the charge oscillations in the dimer

lead to radiation of the energy from the dimer. This radi-

ation diminishes the field enhancement and can be phe-

nomenologically accounted by inclusion of negative

imaginary correction into eres: Then, the electric field

enhancement at resonance is jEc=Eextj � G=ðe00 � e00resÞ:

2.1 Qualitative description

Let us present a qualitative description of the electromag-

netic field enhancement for a dimer consisting of two close

metallic grains. We assume that the gap width d between

the grains is much smaller than the curvature radius a of the

grains near the gap, d� a: We assume also that a is a

characteristic grain size. An example of such system is

depicted in Fig. 1a where two identical spheres of radii

a separated by a narrow gap are presented. Below, we

present an analytical solution for the spheres. Here, we give

a qualitative picture for two arbitrary grains with smooth

boundaries.

Plasmon resonance modes of a single remote spherical

metallic grain were found and classified in Refs. [24, 33]. It

was shown there, that modes of a small metallic grain with

a radius a less than wavelength correspond to n-pole

oscillations of the charge in the metal. Resonant frequen-

cies of the oscillations are determined by the condition

eres ¼ �1� 1=n; ð6Þ

determining the resonant dielectric contrast e: The value

n = 1 corresponds to dipole modes, then eres ¼ �2: The

relation (6) gives the resonant frequencies close to the

plasma frequency of the (bulk) metal (provided the dielectric

constant of the dielectric medium is of order unity).

The dimer constituted of two remote metallic grains was

considered in Ref. [34]. Then the eigen modes of the grains

couple weekly that leads to shifting the resonant frequen-

cies of the dimer in comparison with a single grain. In the

particular case of two identical metallic spherical grains,

the resonance condition characterizing the coupled dipole

Fig. 1 a 3D view of two metallic identical spherical grains, k0 is the

wavenumber of the incident light. b The cross section of two metallic

identical spherical grains; the intensity of the electric field achieves its

maximum value in the area between the grains, which is marked as dark
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mode having axial symmetry with respect to OZ axis

becomes

e ¼ �2 1	 a3=d3
� �

: ð7Þ

As before, d is the distance between the grains, however,

here it is assumed to be much greater than the grain

dimension, d� a: The sign ‘plus’ corresponds to the

symmetric mode in regard to middle plane which separates

the grains whereas the sign ‘minus’ corresponds to the

antisymmetric one. In recent work [35], the technics of

coupled modes was used for analytic investigation of the

problem. However, the technics does not match for ana-

lytical investigation of the limit of close grains: one should

keep large number of harmonics to catch the physics. The

fact can be checked with the help of numerical simulation

using the expansion, see e.g., Ref. [34]. This is the reason

why the results [35] are not compatible neither with our

results nor with previous results [26].

Let us stress that we analyze the opposite limit of close

grains where the field distribution in space has nothing in

common with slightly disturbed eigen modes of separate

grains. In our case, the electric field of the resonance mode

is localized in the central segment of the gap between the

grains where the gap can be regarded as approximately flat

(grey region in Fig. 1b). In the limit the only ‘symmetric’

mode is relevant. The resonance value of the dielectric

contrast for the mode shifts toward large negative values

jej � 1; whereas Eq. (7) gives only small corrections to the

value e ¼ �2:

It is instructive to use results of Ref. [36] for the electro-

magnetic field propagation in the metal–dielectric–metal

structures to establish properties of the electric field distri-

bution in the flat region. The electromagnetic wave can

propagate along a narrow flat gap between two metallic

bodies separated by a dielectric medium provided e ¼
� cothðbd=2Þ where b is the propagation constant and d is

the gap width. We are interested in the case jej � 1; then the

above relation is reduced to b ¼ �2=ðedÞ: For our system of

grains, we anticipate that the plasmon resonance arises when

a standing wave is excited in the flat segment of the gap

between the grains. The standing waves are determined by

the conditions bh � pn where n is an integer number and h is

the longitudinal size of the gap. The size of the flat region

between the grains can be estimated as h�
ffiffiffiffiffi

ad
p

for spherical

grains. Thus, we obtain the following estimation for the

resonance values of the permittivity contrast

eres�
h=d

n
� �

ffiffiffiffiffiffiffiffi

a=d
p

n
; ð8Þ

where the integer number n numerates different modes.

The second evaluation in (8) is given for the case of

spherical grains. The estimation is valid provided n� h=d

that ensures the condition bd� 1 (it is equivalent to the

inequality jej � 1).

Let us describe the spatial structure of the principal

resonant plasmon mode, corresponding to n = 1. Due to

excitation of the mode, surface charges appear on grains.

Some charges of opposite signs are concentrated on the

grain surfaces in the flat region, at distances smaller than

h from the gap center, like in the flat capacitor. The electric

field is approximately homogeneous in the flat region of the

gap between the grains. Since each grain is uncharged,

some compensatory charges are distributed at distances

larger than h from the gap center. The dielectric contrast e
is effectively infinite at the distances, since the inverse

surface plasmon propagation constant is much greater than

the separation from the gap center q in the region. Thus, the

problem of electric field distribution is reduced to an

electrostatic problem. Grain’s surfaces are equipotential in

the case and the potential difference DU between grains is

constant. That leads to the conclusion that both the surface

charge density and the electric field behave / 1=q2 at

distances h� q� a, since the separation between the

grains can be estimated as q2=a there. Therefore, the dipole

moment of the dimer is determined by the distances

q� a;compare Ref. [37]. Thus,

E� d=ðaq2Þ; ð9Þ

in the domain h� q� a: Since the grains are uncharged,

the electric field flux through any closed surface

surrounding one of the grain is zero. Applying the

condition to the plane separating the grains, we obtain

from Eq. (9)

Ec�
d

a2d
ln

a

d
; ð10Þ

where Ec is the electric field in the central part of the gap.

The relation (10) means compensation of the field fluxes

through the central (flat) region and the region h\q\a:

The enhancement factor G defined in (5) can be found

by equating the Ohmic dissipation to the energy pumping

produced by the external field. The solution for the plas-

mon waves in plane gap [36] shows that the penetration

depth of the electric field is equal to the wavelength, which

is h for our mode. Thus, the energy dissipation is con-

centrated in the grain regions of sizes h near the gap that

leads to dissipation power

IQ�xe00ðEc=eÞ2ð
ffiffiffiffiffi

ad
p
Þ3; ð11Þ

where Ec=e estimates the electric field inside the metal. The

energy pumping at resonance can be estimated as xdEext:

Equating the quantity to expression (11) one finds

Ec

Eext
¼ G

e00
; G� ða=dÞ

3=2

lnða=dÞ ; ð12Þ
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where we exploited Eqs. (8) and (10). For frequencies

different from the resonance, one should return to the

general expression (5).

The dependence of the electric field enhancement factor

G (12) on the resonance number n can be obtained from more

careful investigation of the electric field spatial structure,

which uses adiabatic approximation for quasi-planar gap. The

theory of adiabatic approximation is developed in ‘‘Appendix

1’’. It is shown in the ‘‘Appendices’’ that the ratio (10)

increases with the mode number, Ec/d�n. The evaluation (11)

for Ohmic losses should be corrected due to the penetration

depth for the field decreases as 1/n, now the losses are

IQ�xe00ðEc=eÞ2h3=n2: Finally, resonance value of dielectric

contrast eres scales as 1=n; see (8). Thus, the enhancement

factor G obtains additional factor 1=n for modes with n [ 1.

Quasi-static approximation we use is valid until the

radiation becomes comparable with the Ohmic losses

inside the metallic grains. The radiation intensity Ix is

determined by far asymptotics of the electric field at

q� a, and thus, by dipole moment d of the system,

Ix�xd2=k3
d; where kd ¼ k=

ffiffiffiffi

ed
p

is the wavelength in the

surrounding dielectric media. Thus, the criteria IQ � Ix is

necessary for validity of (12) based on pure quasi-static

approximation. Assuming that the dielectric constant ratio

e�
ffiffiffiffiffiffiffiffi

a=d
p

; the criteria can be rewritten in the form

ða=kdÞ3 �
e00m
em

ln2ða=dÞ: ð13Þ

If the Ohmic losses in the metal are relatively small, the

condition is not satisfied and the main part of losses stems from

the radiation. The enhancement factor at the resonance is

Ec

Eext
� k3

d

a2d
lnða=dÞ ð14Þ

in the limit. The enhancement factor (14) grows with the

mode number as n. Hence, the Ohmic dissipation becomes

the main source of the losses in the system at large n, and

the estimation (12) is valid for the limit.

Here, we note that the applicability criteria for reso-

nance frequencies (8) is k2
d � h3=d; which follows from

the requirement that the wavelength of the plasmon wave

in the gap should be less than the depth of the skin layer in

metal. For spherical grains, the condition is equivalent to

ða=kdÞ3 � kd=d; thus it is weaker than (13). Hence, both

limits (12, 14) may take place when the resonance condi-

tion is still determined by (8).

3 Two identical spherical grains

Here, we analytically examine the case of two close

identical spherical metallic grains of radii a separated by a

narrow gap of width d; d� a; see Fig. 1b. Let us introduce

the reference system where the axis Z goes through the

centers of the metallic balls and the X-Y plane is the

symmetry plane of the system. Then the grain surfaces are

determined by the equation

q2 þ
�

z	 ðaþ d=2Þ
�2 ¼ a2; ð15Þ

where q2 ¼ x2 þ y2:
It is useful to pass into the bispherical coordinate system

(see, e.g., Ref. [38, pp.301–303]) with the coordinates

n; g;u where u is the polar angle and other two variables

are defined using the relations

q ¼ a sinh n0 sin g
cosh n� cos g

; z ¼ a sinh n0 sinh n
cosh n� cos g

; ð16Þ

where n0 is a constant. There are two reasons for intro-

ducing the reference system. First, the Laplace equation (3)

is separated in terms of the variables n; g;u: The corre-

sponding system of eigen modes of the Laplace equation

can be found in Ref. [38]. Second, the equation (15) for the

grain surfaces is rewritten as n ¼ 	n0 for a particular

choice of the constant n0 satisfying sinh2ðn0=2Þ ¼ d=ð4aÞ;
that is implied below. For close grains, where d� a; the

parameter n0 is small and the above relation leads to

n0 ¼
ffiffiffiffiffiffiffiffi

d=a
p

:

The variable n runs from �1 to þ1: The region n\�
n0 corresponds to the ‘lower’ grain interior (z \ 0), the

region n [ n0 corresponds to the ‘upper’ grain interior

(z [ 0), and the region �n0\n\n0 corresponds to the

dielectric medium. The variable g is defined in the domain

0\g\p: When g runs from 0 to p (at constant n;u), a

curve is drown starting and finishing at the axis Z inside or

outside the grains (depending on the value of n). The

starting and the finishing points are different, therefore, U
is not periodic in g whereas it is periodic in u:

In our investigation, we can partly rely on the results

obtained for the electrostatic case. The electrostatic field

around two dielectric balls, placed into an external homo-

geneous electric field is examined analytically in Ref. [31].

The case of two touched dielectric balls was investigated

numerically in Ref. [39]. The electrostatic field around two

spherical metallic grains, placed into an external homoge-

neous electric field is discussed in Ref. [37], where recur-

rence relations were obtained for the expansion coefficients

of the potential U over eigen functions of the Laplace

equation. The limit of two close metallic balls was ana-

lyzed separately in Ref. [40]. There are also some results

for the electromagnetic field that can be compared with our

conclusions. Two metallic balls placed into an incident

plane electromagnetic wave were considered in the works

[29, 30], where the recurrence relations were obtained and

then solved numerically for different parameters. Similar
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results were obtained in Ref. [41]. Finally, in Ref. [26], the

recurrence relations were obtained and the resonance val-

ues for contrast of dielectric permittivities were found.

3.1 Recurrence relations

The grain closeness means that only ‘symmetric’ plasmon

modes are of interest, see Ref. [36]. The electric potential

in such modes is antisymmetric, UðzÞ ¼ �UðzÞ or UðnÞ ¼
�Uð�nÞ: Correspondingly, we assume that the electric

field of the incident electromagnetic wave is polarized

along the Z axis. For an arbitrary case, the electric field

strength Eext of the incident wave near the dimer should be

simply substituted by the z-component of the strength.

For our case of grains smaller than the wavelength of the

incident electromagnetic wave, its potential can be

approximated as by a linear function of coordinates near

the grains. Thus, the electric field potential of the incident

wave is

Uext ¼ �Eextz ¼ �Eexta
sinh n0 sinh n
cosh n� cos g

: ð17Þ

It can be represented as an expansion over eigen functions

of the Laplace equation in the bispherical reference system

Uext ¼
X

1

n¼0

Uext
a /a;0�ðn; gÞ; ð18Þ

where the eigen functions are given by Eq. (41). The

expansion (18) is correct in the region n[ 0, to find the

expansion in the region n\ 0 one can use the relation

Uextð�nÞ ¼ �UextðnÞ: The expansion coefficients Uext
a are

Uext
a ¼ �

ffiffiffi

2
p
ð2aþ 1ÞEexta sinh n0: ð19Þ

The expressions can be obtained using the generating

function ðcosh n� lÞ�1=2
of the Legendre polynomials, see

[Eq. (14.7.19), 42].

The potential U outside the metal grains can be repre-

sented as a sum of the external potential Uext and the

induced potential Uind;out: The induced potential Uind;out

satisfies the Laplace equation (3), as well as Uext; and can

be, consequently, expanded over the same eigen functions

Uind;out ¼
X

1

a
 jmj
Bm

a ð/a;mþ � /a;m�Þ: ð20Þ

Note, that the expression is odd in z. Inside one of the

grains, say, corresponding to n[ n0, the electric potential

can be represented as

Uin ¼
X

1

a
 jmj
Am

a /a;mþ: ð21Þ

It is an expansion over functions satisfying the Laplace

equation and analytical at n!1:
Now, we use the boundary conditions. The continuity of

the potential at the grain’s boundaries leads to the fol-

lowing expression for the coefficients An
m

Am
a ¼ Uext

a dm0 þ eð2aþ1Þn0 � 1
h i

Bm
a ; ð22Þ

where dma is the Kronecker symbol. The boundary

condition (4) becomes

X�a;mBm
a�1 þ Xa;mBm

a þ Xþa;mBm
aþ1 ¼ Dadm0: ð23Þ

Explicit expressions for the coefficients in the equation are

written in ‘‘Appendix 2’’.

There is an additional condition imposed onto the

expansion coefficients Bm
a that follows from the Laplace

equation (3). Since both U and qjmje�imu satisfy the Laplace

equation, we find r½rUqjmje�imu � Urðqjmje�imuÞ� ¼ 0:

Integrating the relation over volume of one of the grains,

and converting the integral to the surface one we arrive

at the condition (it is useful to use [Eq. 2.17.4.5, 43] on

the way)

X

1

a¼jmj

ðaþ jmjÞ!
ða� jmjÞ! Ba ¼ 0: ð24Þ

The condition (24) at m = 0 means simply that the grains

remain uncharged. The requirement removes some extra-

neous solutions, which were assigned in Ref. [26] to be

really existing and are called T modes.

The system of the recurrence equations (23) resolves

into independent systems of recurrence equations for dif-

ferent axial numbers m. General scheme of the solution for

the recurrence equations is as follows: recurrence equations

(23) allows one to express step-by-step Ba
m through

B|m|
m , and then the condition (24) fixes the value of B|m|

m .

After that, the coefficient Aa
m has to be found from Eq. (22).

However, realization of the program needs an infinite

number of steps. Nevertheless, one can obtain a set of

analytical results for close spherical grains.

Note that only angular harmonics with m = 0 are

excited by the external field in the main approximation in

a/k, since both the harmonics and the field of the incident

wave have the same axial symmetry. That is why below we

concentrate on the case m = 0.

3.2 Axially symmetric modes

Here, we consider axial symmetric solutions described by

the modes with m = 0. We examine the case of close balls,

then n0 � 1. Expanding the coefficients in the recurrence

equation (23), see Eqs. (42, 43), over n0, one obtains (we

omit the index m = 0 for brevity in the subsection)
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X�a ¼� a
ae � ða� 1Þ

ae þ 1=2
;

Xa ¼ð2aþ 1Þ ae � a
ae þ 1=2

;

Xþa ¼� ðaþ 1Þ ae � ðaþ 1Þ
ae þ 1=2

;

Da ¼
ffiffiffi

2
p

aEext

ae þ 1=2
;

ð25Þ

where ae is determined by the relation

e ¼ � coth ae þ 1
2

� �

n0

� �

: ð26Þ

Accounting for the inequality jej � 1 we obtain approxi-

mately ae � �1=ðn0eÞ � 1=2:

A partial solution of the Eq. (23) with the coefficients

(25) is

Bpart
a ¼ ð2aþ 1Þn0

exp ð2aþ 1Þn0½ � � 1

ffiffiffi

2
p

aEext; ð27Þ

see ‘‘Appendix 2’’. All factors in the expression are posi-

tive. Consequently, the partial solution cannot satisfy the

condition (24) that is reduced to
P

Ba = 0 for m = 0.

Therefore, one should add to the partial solution a solution

of the homogeneous equation Ba
hom that is simply Bhom

a ¼
ða� aeÞ�1; provided n0 a � 1. The other linear indepen-

dent solution decays too slowly at large a, see Eqs. (46)

and (48), and thus, the second solution cannot be used to

satisfy the condition (24). We arrive at the conclusion that

the solution of the Eq. (23) is Ba ¼ Bpart
a þ fBhom

a ; the

factor f should be determined from the condition
P

Ba = 0.

One can find the factor f near the resonance frequencies

that are determined by eigen modes of the homogeneous

equation (23) (without the right hand side). To find reso-

nance values of ae or e; one should substitute into the

condition
P

Ba = 0 the solution Bhom
a ¼ ða� aeÞ�1: Then

summation over a should be cut at a*1/n0, since at larger

a the solution Ba
hom starts to decay exponentially, see (48).

As a result, we find

X

½ae�

a¼0

1

ae � a
¼
X

n�1
0

½ae�þ1

1

a� ae
; ð28Þ

where ½ae� means the integer part of ae: The solutions of the

equations are positive, ae [ 0: The solution which has the

smallest value is

1=ae � � ln n0 , en0 ¼ �2� 4= ln n0; ð29Þ

with the logarithmic accuracy. Other solutions of Eq. (28)

can be represented as ae ¼ an where

an ¼ n� 1� 1= lnðnn0Þ; ð30Þ

and n is an integer number satisfying the inequality

n � n0
-1. The solution (29) corresponds to n = 1. In terms

of the dielectric contrast, the resonance condition (30) is

rewritten as

eres ¼ �n�1
0 n� 1=2� 1= lnðn0nÞ½ ��1; ð31Þ

The resonance condition (31) is in accordance with our

previous estimates (8) since n0 ¼
ffiffiffiffiffiffiffiffi

d=a
p

: The result (31)

was obtained in [26] by the same manner.

If the dielectric contrast e is close to the resonance value

(31), then the main contribution into the sum
P

Ba
hom is

determined by the deviation of Ba
hom from its resonance

value. The sum
P

Ba
part can be found explicitly using the

expression (27). Then, we obtain from the relation
P

ðBpart
a þ fBhom

a Þ ¼ 0 the following expression

f ¼ �
ffiffiffi

2
p

p2aEext

12n2
0

ðn� 1=2Þ�2

�

ln
�

nn0

��2

1

e� eres

: ð32Þ

The applicability condition of the expression is

j1� e=eresj � n=j lnðnn0Þj:

3.3 Electric field profile

The expressions found above enable one to find the electric

potential U in accordance with Eqs. (20, 21). We concen-

trate on a vicinity of the first resonance corresponding to

n = 1 in the expressions (31, 32). The electric field is

examined in the plane z = 0 where the potential is equal to

zero. Therefore, we calculate the electric field there.

Details of calculations can be found in ‘‘Appendix 2’’, here

we present only the final results.

At distances q.n
ffiffiffiffiffi

ad
p

lnða=dÞ from the Z axis, the term

with a ¼ ½ae� in the sum (50) gives the leading contribution

into the electric field. In particular, it coincides in the

region with the electric field of two point charges of

opposite signs, placed in singular point of the transforma-

tion (16) points z ¼ 	a sinh n0 for the first resonance.

Thus,

Ez � �Eext 8p2ða=dÞ3=2

3ð2n� 1Þ lnða=dn2Þ
1

e� eres

PnðlÞ
ð1þ q2=adÞ3=2

;

ð33Þ

where l ¼ cos g and P n(l) is Legendre polynomial. For

first resonance n = 1 the expression demonstrates that at

q�
ffiffiffiffiffi

ad
p

the electric field is a constant that is in accor-

dance with the expression (5) and the estimation (12). For

higher resonance, expression (33) confirms our qualitative

analysis, based on adiabatic approximation, see ‘‘Appendix

1’’.

As we argued in Sect. 2, there exists an intermediate

domain of q where the potential difference between the
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grain surfaces does not depend on q. Now we can formu-

late more accurately the lower boundary of the region, that

is, n
ffiffiffiffiffi

ad
p

lnða=dÞ: The electric field in the region,

n
ffiffiffiffiffi

ad
p

lnða=dÞ � q� a; is calculated in ‘‘Appendix 2’’:

Ez � Eext 16p2

3ð2n� 1Þ2

ffiffiffiffiffiffiffiffi

a=d
p

ln2½a=dn2�
1

e� eres

a2

q2
; ð34Þ

and all terms in sum (50) having a.q=
ffiffiffiffiffi

ad
p

give contri-

bution to the electric field. Note that the electric field

changes its sign at the boundary value q� n
ffiffiffiffiffi

ad
p

lnða=dÞ:
The charge density on the grain surfaces also changes its

sign there. The expression (24) corresponds to the law (9).

As we already noted, near a resonant frequency, there

are the resonant and the background contributions into the

electric field Ec in the gap, see Eq. (5). Calculating the

electric field in the center of the gap, one obtains for the nth

resonance,

G ¼ 8p2

3ð2n� 1Þ
ða=dÞ3=2

ln½a=dn2� ; Gbg ¼ �2
ffiffiffiffiffiffiffiffi

a=d
p

: ð35Þ

Note that the enhancement factor G diminishes as n grows.

It is instructive to compare our results with the electrostatic

case, when x = 0. The limit was investigated in Ref. [37].

Using the solution, one can obtain the field enhancement in

the center of the gap between two conducting spherical

grains

Ec

Eext
¼ 2p2

3

a=d
lnða=dÞ : ð36Þ

The enhancement is parametrically weaker than our

dynamic case.

At large distances, q � a, the induced electric field

tends to the electric field of a point dipole, Ez & - d/q3,

where

d ¼ �Eext 4p4

9

ffiffiffiffiffiffiffiffi

a=d
p

ð2n� 1Þ2 ln2½a=dn2�
a3

e� eres

: ð37Þ

Note the extra logarithmic factor in the expression for the

dipole moment d. The expression (37) being substituted

into the formulae (9, 10) gives estimations corresponding

to Eqs. (33, 34).

Finally, let us account for radiation losses, which can be

included in all above formulae though negative imaginary

part of eres: For the purpose, we assume Ohmic losses to be

absent and resonance condition to be satisfied. For defi-

niteness, we assume the phase of Eext to be zero, then the

dipole moment d is pure imaginary at the resonance. The

energy pumping is W ¼ xEext Im½d�=2 whereas the radia-

tion losses are Ix ¼ 8p3xjdj2=3k3
d: Thus, the dipole

moment d ¼ ið3=16p3Þk3
dEext: Comparing with (37), we

conclude that

e00res ¼ �
64p7

27

ffiffiffiffiffiffiffiffi

a=d
p

ð2n� 1Þ2 ln2ða=dn2Þ
a3

k3
d

: ð38Þ

4 Conclusion

Let us outline the main results of our work. We established

that the frequency of the surface plasmon in the system of

two close metallic grains of nanoscale size is determined

by the geometrical characteristics of the gap and the fre-

quency dependence of the dielectric constants of the metal

and the surrounding media. It is convenient to express the

resonance condition directly in terms of the contrast e of

dielectric constants of the metal and of the surrounding

media. The contrast should be negative and large by its

absolute value if the curvature radius of the gap a is much

larger than its width d. The estimate for the resonance

contrast e is given by Eq. (8), it is confirmed by the rig-

orous consideration for the spherical grains, see Eqs. (31).

To find the resonance frequency x, one should know a

frequency dependence of the contrast eðxÞ which is

determined mainly by the frequency dispersion of the metal

dielectric constant emðxÞ for a given metal, if the dielectric

permittivity of the surrounding media has weak dispersion

of the dielectric constant. The resonance frequency is

determined from the relation e0ðxÞ ¼ eres: For rough esti-

mations, one can use the Drude–Lorentz formula (1).

The question concerning the field amplification inside

the gap is more subtle. General form for the frequency

dependence of the amplification factor on the frequency

near a resonance frequency can be written in the form (5).

The amplification coefficient G is estimated differently for

nearly spherical and nearly cylindrical grains, see the

estimate (12) which is valid if the Ohmic losses dominate

and the radiation losses are negligible for the system. The

estimate is confirmed by rigorous solution of the problem

for the spherical and cylindrical grains, see Eq. (35). One

should use instead estimate (14) for the field enhancement

factor in the opposite limit when the radiation losses are

dominate. In terms of general relation (5), the losses can be

accounted by adding positive imaginary part into the res-

onance dielectric contrast eres; see (38). We anticipate that

for more sophisticated geometry (say, for close strongly

prolate grains arranged along an axis) the amplification

factor can be even larger than for the spherical grains.

However, the problem needs an additional investigation.

In our analysis, we used the quasi-static approximation

that implies that all the characteristic sizes of the grains are

much less than the electromagnetic wavelength in the

homogeneous dielectric medium and the skin layer depth in

the metal. We established that the resonance mode is

localized between the grains, at distances q.
ffiffiffiffiffi

ad
p

from the
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gap center, where d is the width of the gap and a is the

curvature radius of the surface of the grains in the gap area.

And just this small area determines the resonance condition

(8). Therefore the condition survives provided the quasi-

static approximation does work at the scale, that is if the

scale
ffiffiffiffiffi

ad
p

is less than k=
ffiffiffiffiffiffiffiffi

jemj
p

where k is the wave length

in vacuum. That leads to the condition k2=ed � a3=2d1=2,

justifying Eq. (8) even for large grains. However, the

amplification factor in this case should be determined using

complete geometry of the system and Maxwell equations.

Since the resonance mode is localized between the

grains, a principal role in giant electric field enhancement

for a random distribution of the grains is played by grain

dimers with suitable separations, satisfying the resonance

condition. Thus, a number of sharp peaks in the space

distribution of the electric field has to be observed in the

disordered metal–dielectric composite in the external

electromagnetic wave. Experimental data [7, 10] qualita-

tively prove the conclusion, see, e.g., Refs. [44, 45]. To

determine the number of peaks at a given frequency, one

has to know a probability distribution of small separations

d (in comparison with the grain sizes) in grain dimers.

Recently considerable efforts are applied in designing

periodic metal–dielectric composites, see, e.g., Ref. [46].

One could imagine a periodic structure of metallic grains

(say, of metallic spheres) separated by small distances. In

this case, resonance modes can be excited where the

electric field has sharp maxima in central segments of the

gaps between the grains. However, due to overlapping of

the modes localized near the gaps, the resonance has to be

transformed into a band of delocalized modes, like it

occurs for electrons in a periodic potential (crystalline

lattice). As our analysis shows, the structure of the electric

field in the gap between the grains at distances smaller than

the grain size is fixed by boundary conditions at the metal–

dielectric interface. Therefore, the resonance frequency has

to be determined by matching conditions in the regions

between the grains, instead of the condition at infinity for

two grains immersed in an unrestricted dielectric medium.

Thus, we expect that the band width is of the order of the

separation between the resonance frequencies. Relying on a

power-like dependence like in Eq. (1), we conclude that for

grains characterized by a single size a the band width is of

the order of the resonance frequency itself.

One of our assumptions was smoothness of the grain

boundaries. If the boundaries are rough, then a problem

appears concerning an enhancement of energy losses

observed in Ref. [47]. The giant electrical field enhancement

leads to increasing non-linear effects. The problems needs a

special investigation and are out of the scope of this work.
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Appendix 1: Adiabatic approximation for quasi-plane

gap

Consider dielectric gap between two bulk metal bodies. It is

known that the surface plasmon wavenumber b in the gap is

2=djej for ideally plane gap, where d is the thickness of the

gap and e is the ratio the dielectric constants em and ed in the

metal and the dielectric, respectively. The expression is valid

in the quasi-static limit, when jej3=2d � k=
ffiffiffiffi

ed
p

:

Let us derive wave equation for the surface plasmon, if

the gap width slowly changes along the gap, so that adia-

batic approximation for the wave propagation is applicable,

when the wavelength is much less than the typical length

where the gap width changes. Another derivation of the

wave equation is given in Ref. [48].

Let us introduce Cartesian reference system and suppose

for definiteness that the gap is symmetric in regards to OXY

plane. Consider now a part of the gap, where the gap width

d(x, y) is slightly nonuniform, and thus, has a gradient r?d

(we denote r? to be gradient operator in OXY plane). We

locally approximate the boundaries of the gap by two

planes which have mutual inclination angle c ¼ jr?dj: The

adiabatic condition means that ce� 1:

The problem about surface plasmon wave propagation in

a dielectric gap, whose boundaries are two intersecting

planes, can be solved exactly. Let us direct OX axis along the

gradient r?d; and introduce polar reference system q;u in

OXZ plane. The dielectric gap corresponds to angle juj\c=2

and the gap width d = c q (see Fig. 2). The solution for the

quasi-electrostatic equation divðeðrÞ gradUÞ ¼ 0 can be

written as Aðq; yÞ sinhðð2u=cÞ=eÞ inside the gap (outside the

gap at u [ 0 the solution is Aðq; yÞ expð�ð2u=cÞ=eÞ=e).
Wave equation on A(q, y) reads (q-1qqqqq ? qy

2 ?

b2)A = 0, where local wavenumber b ¼ �2=ed: The equa-

tion can be rewritten in the form

ððr?Þ2 þ b2Þðb�3=2EzÞ ¼ 0: ð39Þ

In (39) we dropped high corrections in r?d that is correct

in adiabatic limit when the surface plasmon wavelength in

Fig. 2 Dielectric gap with slightly varying width
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the direction of the gap alternation r?d is much less than

the typical length were the gap width changes. It is worth to

mention that WKB approximation for wave equation (39)

is applicable at the same condition as the equation was

obtained.

The dependence of the electric field enhancement factor

G (12) on the resonance number n can be obtained from

investigation of the electric field spatial structure based on

the developed theory of surface plasmon mode in quasi-

planar gap. Let us assume the number n of the mode to be

large. It is applicable adiabatic approximation to describe

the surface plasmon mode inside the gap in the case. It

looks like

1

q
oqqoq þ b2

� 	

Ez

b3=2
¼ 0; b ¼ � ðedÞ�1

1þ q2=h2
: ð40Þ

in cylindrical coordinates. Solution at q [ h is Ez /
J0ðq=ðjejdÞÞ; where J0 is Bessel function of zero order. To

continue the solution into region qJh; it is useful to

rewrite Eq. (40) as

ðo2
q þ b2

qÞð
ffiffiffi

q
p

Ez=b
3=2Þ ¼ 0

where bq
2 = b2 - 1/(4q2), and use the WKB approxima-

tion to solve the equation. The WKB approximation is

applicable between the turning points, when qs \ q\ qc.

The turning points are determined by equating wavenum-

ber bq to zero, thus, qs ¼ jejd=2� h=n and qc ¼
2h2=ðjejdÞ� nh: The solution for the electric field profile

between the points is Ez / cos
R q bðq0Þdq0
� �

=ðb ffiffiffi

q
p Þ; since

bq is close to b in the region. Note that the integral under

the cosine converges at q * h that validates the previous

evaluation (8). At q [ h the wavenumber is constant and

Ez decays as 1=
ffiffiffi

q
p

; that corresponds to previously obtained

solution in terms of Bessel function. The main part of

Ohmic dissipation occurs in the region, it can be estimated

as IQ�xe00ðEc=neÞ2ð
ffiffiffiffiffi

ad
p
Þ3; that coincides with evaluation

(11) for first mode. At h \q\ nh, the wavenumber

decreases as 1/q2 and the electric field decays as 1/q5/2.

Although the filed decreases quite rapidly in the region, the

main part of surface charge is accumulated on the scales.

The value of the charge is determined by the last region

with constant sing of Ez before the turning point qc. The

width of the region is quite large, Dq� nh;, thus, the sur-

face charge accumulated in the region is *Ecad/n. At

larger distances q[ qc, the adiabatic approximation is not

applicable. The region corresponds to static limit, where

potential difference between the surfaces does not depend

on distance from the axis of the system. Thus, evaluation

(10) looks now as Ec=n�ðd=a2dÞ lnða=dÞ: This means that

the enhancement factor G obtains additional factor 1/n for

modes with n [ 1.

Appendix 2: Recurrence equation and electric field

calculation between two spherical grains

The basis of eigen functions for Laplace operator can be

chosen as follows in bispherical reference system:

/a;m	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh n� l
p

exp 	 aþ 1
2

� �

n
� �

Pjmja ðlÞeimu; ð41Þ

where Pjmja is Legendre associated polynomial, a C |m| and

l ¼ cos g: The recurrence equation (23) arises because of

the boundary condition (4) and the normal derivative

meshes the neighbouring harmonics. We used [Eq. 14.10.3,

42] when derivating the coefficients in the recurrence

equation (23), which are

X	a;m ¼ � aþ 1
2
	 mþ 1

2

� �� �

� cosh aþ 1
2
	 1

� �

n0

� �

� þ e sinh aþ 1
2
	 1

� �

n0

� �
 �

;

Xa;m ¼ e e�n0 þ 2a cosh n0

� �

sinh aþ 1
2

� �

n0

� �

þ cosh aþ 3
2

� �

n0

� �

þ 2a cosh n0 cosh aþ 1
2

� �

n0

� �

;

ð42Þ

Da ¼ �
ffiffiffi

2
p

aEext
z sinh n0ðe� 1Þ

� exp � aþ 1
2

� �

n0

� �

aen0 � ðaþ 1Þe�n0
� �

:
ð43Þ

The condition n0 � 1 allows us to pass in recurrence

equations (23) to continues limit far from special points.

On the way, one obtains a linear differential equation of the

second-order valid at ja� aej � 1: The coefficients in the

differential equation

C
jmj
2 o2

a þ C
jmj
1 oa þ C

jmj
0

� 

BmðaÞ ¼ DðaÞdm0 ð44Þ

are set by equations C
jmj
2 ðaÞ ¼ ðXþa;m þ X�a;mÞ=2;C

jmj
1 ðaÞ ¼

Xþa;m � X�a;m;C
jmj
0 ðaÞ ¼ Xa;m � ðXþa;m þ X�a;mÞ: We consider

mainly the axial symmetric modes, which correspond to

m = 0. Equation (44) looks like
�

aða� aeÞo2
a þ ð3a� aeÞoa þ 1



B ¼
ffiffiffi

2
p

Eext
z a ð45Þ

in the region a�1/n0. Two linear independent solution of

homogeneous version of Eq. 45) are

1=ða� aeÞ; lnða=aeÞ=ðae � aÞ; ð46Þ

where the first one is Ba
hom introduced in Sect. 3.2. Partial

solution of full equation (45) is B ¼
ffiffiffi

2
p

Eext
z a [compare

with (27)]. It is convenient to pass to variable u = an0 in

the limit ða� aeÞ � 1; after what the differential equation

on B takes the form

u sinh u o2
u þ ð2u cosh uþ sinh uÞou þ eu

� �

B

¼
ffiffiffi

2
p

Eext
z a e�uð1� 2uÞ:

ð47Þ

Two linear independent solutions of homogeneous version

of (47) are
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2=n0

e2u � 1
;

1

e2u � 1

Z

u

1

e2u0

u0
du0: ð48Þ

These solutions are continuation of solutions (46)

correspondingly. The first one decreases exponentially,

whereas the second one decreases only as 1/a at large

a � 1/n0. Thus, one should demand that the solution for

expansion coefficient Ba should contain only the first

solution in (46, 48) such that expression (24) should be

satisfied. Partial solution of (47) is 2
ffiffiffi

2
p

Eext
z au=ðe2u � 1Þ

[compare with (27)]. Let us implement matching of

solutions of (45) and (47) using condition
R1

1
Bda ¼ 0

which is the continuous analog of (24). As a result, we

obtain

B ¼ �
ffiffiffi

2
p

Eext
z a

1� b=ðn0ða� aeÞÞ; a� 1=n0

2ðu� bÞ=ðe2u � 1Þ; a� ae

�

ð49Þ

where b ¼ p2=ð12 lnð1=n0ÞÞ:
Finally, the electric field z-component in the plane z = 0

is expressed through expansion coefficients Ba as follows

EzðqÞ ¼ Eext
z 1þ

ffiffiffi

a
p
ffiffiffi

d
p ð1� lÞ3=2

X

1

a¼0

ð2aþ 1ÞBaPaðlÞ
" #

:

ð50Þ
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