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1 1. INTRODUCTION

We consider the theory of random fiber lasers. The
concept of random lasers exploiting multiple scattering
of photons in an amplifying disordered medium in order
to generate coherent light without a traditional laser res�
onator has attracted much attention in recent years. This
research area lies at the interface of the fundamental
physics of disordered systems and laser science. The idea
of a random laser was originally proposed in the context
of astrophysics in the 1960s by V. S. Letokhov, who stud�
ied scattering with “negative absorption” of the inter�
stellar molecular clouds. Research on random lasers has
developed into a mature experimental and theoretical
field. A simple design of such lasers would be promising
for potential applications.

In traditional random lasers, the properties of the
output radiation are typically characterized by com�
plex features in the spatial, spectral, and temporal
domains, making them less attractive than standard
laser systems in terms of practical applications.
Recently, an interesting and novel type of random
lasers that operate in a conventional telecommunica�
tion fibers without any predesigned resonator mirrors
was demonstrated. The feedback required for laser
generation in the random fiber laser is provided by
Rayleigh scattering from the inhomogeneities of the

1 The article is published in the original.

refractive index that are naturally present in silica
glass. In the proposed laser concept, the randomly
backscattered light is amplified through the Raman
effect, providing distributed gain over distances up to
100 km. Although an effective reflection due to the
Rayleigh scattering is extremely small, the lasing
threshold may be exceeded when a sufficiently large
distributed Raman gain is supplied.

The random distributed feedback fiber laser has a
number of interesting and attractive features. The fiber
waveguide geometry provides transverse confinement,
and the effectively one�dimensional random distrib�
uted feedback leads to the generation of a stationary
beam with a narrow spectrum. The random distributed
feedback fiber laser has efficiency and performance
that are comparable to and even exceed those of simi�
lar conventional fiber lasers. The key features of the
generated radiation of random distributed feedback
fiber lasers include a stationary narrow�band continu�
ous modeless spectrum that is free of mode competi�
tion, nonlinear power broadening, and an output
beam with a Gaussian profile in the fundamental
transverse mode (generated both in single�mode and
multi�mode fibers). Details of the random laser per�
formance can be found in recent review [1].
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2. BASIC DYNAMIC EQUATIONS

The random fiber laser is a piece of optical fiber of
length L that is optically pumped from the fiber ends.
As a result, randomly backscattered light in the fiber is
amplified through the Raman effect, and the system
starts to lase at some level of the amplification (see
[1]). Two electromagnetic waves propagating to the
right and to the left are generated in the fiber. A sche�
matic distribution of the generated waves along the
fiber is presented in the figure. Due to pumping, their
amplitudes increase during the propagation and
achieve maxima near the ends of the fiber, before pass�
ing outside the fiber. We stress that the nonlinear inter�
action of the generated waves propagating to the right
and to the left is weak because their maxima are
achieved at the opposite ends of the fiber. Therefore,
they can be considered independently.

We begin with the dynamic equation describing the
evolution of the envelope of the generation electro�
magnetic field, ψ, over the evolution coordinate z
within the fiber, at 0 < z < L, where L is the fiber length.
The equation for the generation wave propagating in
the fiber to the right is

(1)

where t is the time, γ is the Kerr nonlinear coefficient,
and β is the quadratic dispersion coefficient. We con�
sider the generation processes high above the genera�
tion threshold and therefore neglect noise terms in
Eq. (1). An equation analogous to Eq. (1) can be for�
mulated for the signal propagating to the left, the only
difference being in the sign of the derivative ∂z.

The gain operator  is determined by an interplay of
the pumping and the attenuation of the signal. In the
frequency domain, it is a frequency�dependent factor

where gR the Raman gain coefficient, P(z) is the power
of the pumping wave, and αl is the linear attenuation
coefficient in the fiber. The distribution of the pumping
over the evolution coordinate z is defined by the factor
P(z), which is assumed to be known. The lasing is real�
ized for frequencies near the frequency where the gain g
achieves a maximum. We take the frequency as the car�
rying frequency for the envelop ψ. Then we obtain

(2)

which is an expansion of the gain coefficient near its
maximum. Here, ω is the frequency shift from the car�

i ∂z ĝ–( )ψ β∂t
2ψ γ

2
��ψ ψ 2

,+=

ĝ

g gRP z( ) αl,–=

g ω( ) g0 ϖω2
,–=

rying frequency. We note that above the generation
threshold, the condition g0 > 0 has to be fulfilled.

We stress that in reality, the power P of the pumping
wave is dependent on the generation wave ψ: they are
related via the balance equation [1, 2]. Therefore, the
problem should be solved in two steps. First, we have
to solve the balance equation to find P(z). Then P(z)
can be involved in calculating ψ. Here, we concentrate
on the second step.

In a random fiber, almost all generated radiation is
coupled out from the fiber end. Only a small part of the
energy is reflected back via Rayleigh backscattering
processes. Because the amplitudes of generated waves
increase during evolution, the scattering process is
effective only at the end of the fiber. This implies an
effective initial condition for the generation wave ψ+,
propagating to the right, in terms the amplitude of the
generation wave ψ–, propagating to the left. Formally,
the initial conditions for the waves have the form

(3)

where Rl and Rr are reflection coefficients on the left
end and on the right end of the fiber, defined in the fre�
quency domain. They have different ω–dependences
in different situations. In the case of the random�fiber
laser, |R| � 1. The reflection smallness leads to the
conclusion that the signal is weakly disturbed by the
reflection, thus justifying conditions (3).

The spectrum of the generated wave in the random�
fiber laser is relatively broad (compared to traditional
lasers) and consists of a high number of spectral com�
ponents near the carrying frequency (see [1]). The
main challenge here is to describe the influence of
nonlinearity on the generation spectrum. For this, we
use the standard kinetic approach dealing with aver�
aged quantities. We assume that the dispersion length
(βΔ2)–1 (where Δ is the spectral width) is much smaller
than fiber length L. Then the harmonics with different
frequencies possess essentially different phases and
therefore, under averaging over a length larger than the
dispersion length, the harmonics can be treated as
approximately independent.

The main object in the kinetic theory is the pair
correlation function

(4)

where angular brackets mean averaging over a distance
larger than the dispersion length and the asterisk
denotes complex conjugation. Due to the assumed
time homogeneity, the average in (4) depends solely on
the time difference t and is independent of t1. However,
in examining real fibers, it is useful to average over
time (integrate over t1) to eliminate effects related to
different fluctuations (noises) neglected in our formal�
ism. We stress that due to the z�dependence of the gen�
eration wave, the system is not homogeneous in space,

ψ+ 0 t,( ) R̂lψ– 0 t,( ),=

ψ– L t,( ) R̂r ω( )ψ+ L t,( ),=

ψ z t1 t+,( )ψ* z t1,( )〈 〉 dω
2π
������e iω t– F z ω,( ),∫=

pump pump

z = 0 z = L

ψ+ ψ
−

Illustrating arrangement of a fiber laser. 



1136

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 119  No. 6  2014

KOLOKOLOV et al.

in contrast to the time behavior. The function F is no
other than the spectrum of the generated signal. We
note that the signal intensity I can be expressed via the
spectrum as the integral

(5)

Boundary conditions (3) lead to the following rela�
tions for the averages:

(6)

where F+ and F– correspond to the respective genera�
tion waves propagating to the right and to the left. In
what follows, we consider the symmetric stationary
situation where Rl = Rr and F+(z) = F–(L – z). Then we
obtain the condition

(7)
for the signal propagating to the right, The condition
relates values of the correlation function F taken at dif�
ferent ends of the fiber and can therefore be consid�
ered as a closed ring.

3. KINETICS

We assume weak nonlinearity of the system. Then a
perturbation theory has to be developed to examine
nonlinear effects in the random laser. The starting
point for the theory is the basic equation (1) for the
envelope ψ(z, t). We treat the nonlinear term in Eq. (1)
as a perturbation and expand the solution of the equa�
tion with respect to the nonlinearity. Then we use the
expansion for calculating average (4).

Below, our aim is to derive a dynamic equation for
the spectrum F. The equation enables analyzing the
form of the spectrum and its dependence on the sys�
tem parameters. Our derivation is performed in the
spirit of the derivation of the standard kinetic equation
[3, 4] for classic waves. However, our system is close to
an integrable one because at g = 0, the basic equation (1)
is the nonlinear Schrödinger equation, which is com�
pletely integrable and has an infinite number of inte�
grals of motion. There are no kinetics in the system of
waves described by the nonlinear Schrödinger equa�
tion [5]. Therefore, the kinetics are related to the pres�
ence of the gain term g, which makes the situation
absolutely different from the standard kinetic equation
and requires a consistent derivation of the generalized
kinetic equation.

A formal solution of Eq. (1) can be written as

(8)

where z∗ is an arbitrary point. Here,

I ψ 2〈 〉≡ dω
2π
������F ω( ).∫=

F+ 0 ω,( ) Rl ω( ) 2F– 0 ω,( ),=

F– L ω,( ) Rr ω( ) 2F+ L ω,( ),=

F 0 ω,( ) R ω( ) 2F L ω,( ),=

ψ z t,( ) dt'G z z* t t'–, ,( )ψ z* t',( ) iγ
2
��� dt'∫–∫=

× dz'G z z' t t'–, ,( )ψ z' t',( ) ψ z' t',( ) 2
,

z*

z

∫

(9)

is the Green’s function determining a linear response
of the system to an external influence. Analogously, it
is possible to consider the evolution “backward” in z.
For example, in the linear approximation,

(10)

We now pass to obtaining an equation for the func�
tion F in (4). It follows directly from Eq. (1) that

(11)

Here, as above, the angular brackets denote averaging
over a distance larger than the dispersion length. Equa�
tion (11) implies that both the gain g and the correlation
function F are slowly varying functions at the averaging
length. We assume that βΔ2 � g0, and then we can

choose the averaging length l much smaller than . In

addition, the inequality ϖΔ2 � g0 has to be satisfied,
which is a manifestation of the spectrum narrowness in
comparison with the characteristic frequency range of
Raman scattering. Therefore, we arrive at the chain of
the inequalities ϖΔ2 � g0 � βΔ2 to be satisfied for the
validity of our theoretical scheme.

The phase randomization caused by dispersion
leads to approximately Gaussian statistics of the field
ψ since it appears to be a sum of a large number of
independent terms. Therefore, in calculating averages
like (11), we can use the Wick theorem (that is, the
presentation of the average of some product of ψ fields
via its pair correlation functions). But applying the
Wick theorem to the combination in the right�hand
side of Eq. (11) gives zero. Therefore, we have to take
into account a weak correlation between different har�
monics caused by nonlinearity. Technically, we must
use the nonlinear contribution to ψ from Eq. (8),

(12)

where we substituted expression (10). The goal of the
substitution is to express the variation δψ in terms of
ψ(z, t). Then averages in the right�hand side of
Eq. (12) are expressed in terms of the function F(z, ω)
in (4).

G z z' t, ,( ) θ z z'–( ) dω
2π
������∫=

× iωt– dz'' g iβω2+( )

z'

z

∫+exp

ψ z' t',( ) dtG z z' t t'–, ,( )ψ z t,( ).∫≈

∂zF z ω,( ) 2gF iγ
2
��� dteiω t

∫–=

× ψ z t,( )ψ* z 0,( ) ψ z t,( ) 2 ψ z 0,( ) 2–[ ]〈 〉 .

g0
1–

ψnon z t,( ) iγ
2
��� dt' dz'G z z' t t'–, ,( )

0

z

∫∫–=

× dt1G z z' t1 t'–, ,( )ψ z t1,( )∫
× dt2G z z' t2 t'–, ,( )ψ z t2,( )∫

2
,
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Using the Wick theorem, substituting expression (9)
and taking integrals over time, we obtain from Eq. (12)
that

(13)

where F = F(z, ω), F1 = F(z, ω1), and so on, and the
following notations are introduced:

Equation (13) is a generalized kinetic equation
derived for interacting waves in an unstable medium
(due to pumping). We see that in Eq. (13), the usual δ–
functions (that ensure the wave vector conservation) in
the collision integral (right�hand side) are substituted
by Lorentzians, where the gain g is present. This is a
manifestation of the system inhomogeneity in z caused
by the gain. Other properties of the generalized kinetic
equation are close to those of the usual wave kinetic
equation. For example, the integral over ω of the col�
lision integral is equal to zero. This is a consequence of
the wave action (number of waves) conservation law
which is valid without gain.

It is possible to substitute g  g0 in the collision
integral because we assume ϖΔ2 � g0 and the nonlin�
ear stage (where the collision integral is relevant) is
relatively short. However, generally, we should keep
the term ϖω2 in the left�hand side of Eq. (13) since it
is relevant at the linear stage of wave evolution. As a
result, we arrive at the equation

(14)

which is a starting point for the subsequent analysis.
In this paper, we examine the case of relatively

strong dispersion (wide spectrum), when βΔ2 � g0
(where Δ is the spectrum width). (The case of a narrow
spectrum was considered in [2].) The inequality βΔ2 �
g0 means that we can pass to the limit of small g in
Eq. (13) or (14). However, we should be careful
because of the noted cancellations. In the limit as
g0  0, the Lorentzian in the collision integral (the
right�hand side of Eq. (14)) turns into a δ�function of
Ω, thus acquiring the form of the usual collision inte�
gral [4]. But the collision integral vanishes in this limit.
This is a consequence of the complete integrability of

∂z 2g–( )F γ2 dω1dω2dω3

2π( )2
������������������������δ ω ω1 ω2– ω3–+( )∫=

×
gaFF2F3

ga
2 Ω2+

����������������
gcF1F2F3

gc
2 Ω2+

�����������������
2gbFF1F3

gb
2 Ω2+

������������������–+ ,

Ω β ω2 ω1
2 ω2

2– ω3
2–+( ),=

ga g ω( ) g ω2( ) g ω3( ) g ω1( ),–+ +=

gb g ω( ) g ω1( ) g ω3( ) g ω2( ),–+ +=

gc g ω1( ) g ω2( ) g ω3( ) g ω( ).–+ +=

∂z 2g0– 2ϖω2+( )F

=  γ2 dω1dω2dω3

2π( )2
������������������������δ ω ω1 ω2– ω3–+( )∫

×
2g0

4g0
2 Ω2+

����������������� FF2F3 F1F2F3 FF1F2– F
ω

F1F3–+[ ],

the one�dimensional nonlinear Schrödinger equation.
The existence of an infinite number of integrals of
motion leads in this case to the absence of kinetics in
all orders in nonlinearity [5].

Therefore, we should go beyond the zeroth order in
g0 (that gives the δ�function) and keep the first order in
g0. Hence, we can neglect g0 in comparison with Ω in
the denominator in Eq. (14) and keep g0 in the numer�
ator to obtain

(15)

We note the presence of a singular denominator in
Eq. (15). This does not lead to any divergence just due
to the integrability (any divergence would mean that
the coefficient at the δ�function is nonzero). This
equation is a starting point of subsequent calculations.

As follows from Eq. (15), in the linear approxima�
tion,

(16)

This expression describes the exponential growth of
the signal amplitude. Besides, relation (16) shows that
in the linear regime, the laser spectrum becomes nar�
rower following the gain spectral shape g(ω). If � >

, where � = ϖ and Δ0 is the initial spectrum

width at z = 0, then the spectrum width Δ at the end of
the linear stage can be estimated as Δ ~ �–1/2. We note
that the spectral width in this case does not depend on
the initial spectral width at z = 0.

4. SOLUTION

The right�hand side of Eq. (15) can be estimated as
g0F(γI/βΔ2)2. We first analyze the case where γI � βΔ2

at the end of the fiber. That means that the inequality
is satisfied everywhere because I increases monotoni�
cally as z increases. The inequality γI � βΔ2 means that
the linear term 2g in the left�hand side of Eq. (15) is
larger than the collision integral (the right�hand side
of the same equation). Then the leading contribution
to the F�evolution by the collision integral is produced
at the nearest to the fiber end interval of the length of

the order of .

To calculate the nonlinear (collision) contribution
to F(L), we can use the linear law (16) (where the term
with ϖ can be neglected) to obtain

Then in accordance with Eq. (15), the nonlinear cor�
rection to F can be written as

∂z 2g–( )F z( )

=  
2g0γ2

β2
����������

dω1dω2dω3

2π( )2
������������������������δ ω ω1 ω2– ω3–+( )∫

× ω2 ω1
2 ω2

2– ω3
2–+( )

2–

× FF2F3 F1F2F3 FF1F2– FF1F3–+( ).

Flin z ω,( ) 2 dz g0 ϖω2–( )∫[ ].exp∝

Δ0
2–

dz∫

g0
1–

F z( ) 2g0 z L–( )[ ]F L( ).exp=
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(17)

where all functions, F, F1, …, are taken at z = L.

To achieve a statistically steady state, we have to
satisfy relation (7). We assume here that the signal
scattering is produced by impurities. Then the reflec�
tion coefficient R depends weakly on the frequency ω,
because the impurity size is much smaller than the
wavelength. In this case, the only relevant parameter is
κ = |R

ω
|2 � 1. Then it follows from Eq. (7)

(18)

To satisfy Eq. (18), we have to assume that the ϖ�con�
tribution to the law (16) is small. Therefore,

(19)

where η � 1.
Using relations (16), (17), and (19), we find from

the condition (18) that

(20)

where all functions are taken at z = L and � = ϖ.

As follows from Eq. (20), the spectrum width is deter�
mined by the balance of the terms in the left�hand
side, that is,

(21)

We note the smallness of Δ in η. Comparing different
terms in Eq. (20) we find

and

(22)

Hence, Δ ∝ I1/3 in the regime.
Equation (20) admits a self�similar substitution

(23)

Fnon
γ2

3β2
�������

dω1dω2dω3

2π( )2
������������������������δ ω ω1 ω2– ω3–+( )∫=

× ω2 ω1
2 ω2

2– ω3
2–+( )

2–

× FF2F3 F1F2F3 FF1F2– FF1F3–+( ),

F 0 ω,( ) κF L ω,( ).=

κ 2 dzg0

0

L

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

exp 1 η,+=

η 2�ω2–( )F γ2

2β2
�������

dω1dω2dω3

2π( )2
������������������������∫+

× δ ω ω1 ω2– ω3–+( ) 1

ω2 ω1
2 ω2

2– ω3
2–+( )

2
�����������������������������������������

× FF2F3 F1F2F3 FF1F2– FF1F3–+[ ] 0,=

dz

0

z

∫

Δ η
2�
������.=

I βη3/2

γ�
����������∼

I β
γ
�� �Δ3

.∼

F L ω,( ) βη

γ �
����������φ ω

Δ
���⎝ ⎠

⎛ ⎞ ,=

where Δ is determined by Eq. (21). Then Eq. (20) leads
to the universal form of the equation for the self�simi�
lar function

(24)

where x1 = x2 + x3 – x. Numerical solution of the
equation gives the normalization factor

We see from Eq. (22) that the spectral width Δ
increases as the intensity I increases. At some level
of pumping, γI becomes of the order of βΔ2. For
higher pumping levels, the lasing regime completely
changes. The regime requires a separate consider�
ation. Our preliminary analysis shows that in this
regime, the relation γI ~ βΔ2 is satisfied during the
nonlinear stage of the generation wave propagation
(near the fiber end). The result needs an additional
justification.

5. CONCLUSION

We analyzed the signal spectrum of a fiber laser that
is pumped by external light (due to Raman scattering).
We use a generalized kinetic equation for the analysis.
A peculiarity of the wave system under consideration is
its closeness to the completely integrable case of the
one�dimensional nonlinear Schrödinger equation. We
find a relation between the spectrum width and the
intensity of the signal, that is characterized by a power
law. We also establish exponential tails of the spectrum
(with power�law corrections). The exponential char�
acter of the tails is ultimately caused by the frequency
conservation law, satisfied due to homogeneity of the
system in time. From the other side, our system is spa�
tially inhomogeneous. However, the inhomogeneity
was assumed to be weak in comparison with the phase
variations caused by dispersion. The last condition
implies that the spectrum width has to be large
enough. The opposite case was analyzed in [2].

It is instructive to compare our generalized equa�
tion with the usual kinetic equation for weak wave tur�
bulence [4]. The last one has two types of solutions:
equilibrium solutions and flux solutions, both with
power spectra. In our case, the collision integral is
nonzero, because it must be balanced by some addi�
tional term appearing due to the spatial inhomogene�
ity of the system. That leads to the existence of a
z�dependent characteristic spectrum width. Formally,
it is a consequence of the “locality” property of our
collision integral (it is determined by frequencies of
the order of the external frequency); the “locality”
property is also characteristic of the collision integral
in usual weak wave turbulence.

x2 1–( )φ x( )
dx2dx3

4π( )2
������������∫=

×
φφ2φ3 φ1φ2φ3 φφ1φ2– φφ1φ3–+

x x2–( )2 x x3–( )2
���������������������������������������������������������������,

dxφ x( )∫ 23.8.≈
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Another peculiarity of our system, distinguishing it
from the traditional weak wave turbulence, is the
nearly integrable character of the system. Indeed, in
the leading approximation, the wave propagation
through a fiber is described by the nonlinear
Schrödinger equation that is completely integrable.
The wave kinetics in the integrable case are absent [5].
Therefore, the wave kinetics in our case are related
mainly to the spatial nonhomogeneity of the fiber
caused by the gain (and the relaxation). Therefore, we
have to use the double perturbation theory, using
weakness of both the nonlinearity and the nonintegra�
bility. That is why the resulting wave kinetics appear to
be essentially different from those in the traditional
weak wave turbulence: instead of a power�law spec�
trum, we arrive at exponential tails in the spectrum.

Our predictions are in good agreement with exper�
imental observations. The comparison will be pub�
lished elsewhere.

We thank S.A. Babin, D.V. Churkin, and
S.K. Turitsyn for numerous helpful discussions and
the explanations of the experimental situation.
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