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We demonstrate that waves excited on a fluid surface produce local surface rotation owing to
hydrodynamic nonlinearity. We examine theoretically the effect and obtain an explicit formula for the
vertical vorticity in terms of the surface elevation. Our theoretical predictions are confirmed by
measurements of surface motion in a cell with water where surface waves are excited by vertical and
harmonic shaking the cell. The experimental data are in good agreement with the theoretical predictions.
We discuss physical consequences of the effect.
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Waves excited on the fluid surface are well described in
terms of the potential fluid motion. The approximation is
justified by the weakness of the wave damping. In this case,
the fluid vorticity is expected to be nonzero in a narrow
layer near the fluid surface where viscosity is relevant [1,2].
In the linear approximation the vorticity is directed along
the unperturbed fluid surface; therefore, its vertical com-
ponent is zero and yet the solenoidal motion of the fluid
surface generated by surface waves was recently observed;
see Refs. [3–5]. The waves were excited due to Faraday
instability [1,6] and were sufficiently strong to produce
intense solenoidal surface currents.
However, the generation mechanism of the solenoidal

currents from the surface waves remained so far obscure.
We show that the mechanism is related to nonlinearity of
surface waves. One can roughly say that the surface tilt
produces a tilt of the vorticity in the viscous sublayer as
well. A first-ever theory explaining the generation of
surface solenoidal motion by surface waves is developed
and quantitative predictions are made. For the simplest
case of two plane surface waves the theory was checked
experimentally.
We demonstrate that surface waves of close frequencies

can generate surface solenoidal currents varying slowly in
time and varying in space on the wavelength scale. It turns
out that the velocity associated with the currents can be
estimated as v2k=ω, where v is the surface velocity in the
generated waves, k is their wave vector, and ω is their
frequency. Surprisingly, the expression for the velocity is
independent of viscosity though it is produced by the
viscous mechanism. This property can be compared to
hydrodynamic turbulence. Its characteristics in the inertial
interval of scales are independent of viscosity although it is
viscous dissipation that ensures the statistical stationarity.
Let us present our theoretical scheme. The bulk motion

of an incompressible fluid is described by the Navier-
Stokes equation [1,2]

∂tvþ ðv∇Þv ¼ −∇P=ρþ ν∇2v; ð1Þ

where ρ and ν are the fluid mass density and the kinematic
viscosity coefficient, respectively, v is the fluid velocity and
P is pressure. Equation (1) has to be supplemented by the
incompressibility condition div v ¼ 0. The equation for the
vorticity, ϖ ¼ curl v, is

∂tϖ ¼ −ðv∇Þϖ þ ðϖ∇Þvþ ν∇2ϖ: ð2Þ
The Navier-Stokes equation (1) has to be supplemented

by the boundary conditions at the fluid surface. First it is
the kinematic boundary condition [1]

∂th ¼ vz − vx∂xh − vy∂yh; ð3Þ
implying that the fluid surface moves with the fluid velocity
v. Here and thereafter we assume that the axis Z is directed
vertically, opposite to the gravitational acceleration g and
that the equilibrium fluid surface coincides with plane
z ¼ 0. The deviations from the equilibrium shape are
described by the elevation hðt; x; yÞ.
There is also the dynamic boundary condition that can be

obtained from the requirement of zero momentum flux
through the fluid surface [1,2]. This leads to the conditions

P − 2ρνnink∂ivk ¼ ρghþ σð∇nÞ; ð4Þ
ðδij − ninjÞnkð∂jvk þ ∂kvjÞ ¼ 0; ð5Þ

to be satisfied at z ¼ h. Here, σ is the surface tension
coefficient and nðt; x; yÞ ¼ ð−∂xh;−∂yh; 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð∇hÞ2p

is the unit vector normal to the surface. The boundary
condition for the vorticity ϖi ¼ ϵijk∂jvk follows from
Eq. (5)

nmnk∂kϖm þ ð∂ivk þ ∂kviÞϵimnnmKkn ¼ 0; ð6Þ
where ϵijk is the unit antisymmetric tensor and we intro-
duced the curvature tensor Kik ¼ Kki ¼ ðδij − ninjÞ∂jnk.
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Further we consider the case where some waves are
excited on the fluid surface. The case of deep water is
implied. We assume that the wave steepness is small,
i.e., j∇hj ≪ 1. In the linear approximation we deal with
the gravitational-capillary waves characterized by the
dispersion law ω2 ¼ gkþ ðσ=ρÞk3, where k is wave vector
of the wave and ω is its frequency. We also assume that the
waves are weakly decaying, i.e., γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

νk2=ω
p

≪ 1.
In the linear approximation, all the quantities character-

izing the surface waves can be expressed via the surface
elevation h. The explicit expressions for the velocity and
the vorticity in the leading order with respect to the small
parameter γ are

vα ¼ ν½ðκ̂2 þ k̂2Þ=k̂� expðk̂zÞ∂αh − 2νκ̂ expðκ̂zÞ∂αh; ð7Þ

vz ¼ νðκ̂2 þ k̂2Þ expðk̂zÞh − 2νk̂2 expðκ̂zÞh; ð8Þ

ϖα ¼ 2ϵαβ expðκ̂zÞ∂β∂th; ð9Þ
see, e.g., Ref. [1]. Here and below Greek indices run
over x, y, ϵαβ is the unit antisymmetric tensor and we
introduced the nonlocal operators k̂ ¼ ð−∂2

x − ∂2
yÞ1=2, κ̂ ¼

ð∂t=νþ k̂2Þ1=2. The first terms in the expressions (7), (8)
correspond to the potential part of the velocity, whereas the
last terms represent corrections, arising due to viscosity.
Note that the vorticityϖα is located in a relatively thin layer
near the surface. The depth of the layer is estimated as
γ=k ≪ 1=k, where 1=k is the penetration depth of the
potential part of the velocity.
The Z component of the vorticity ϖz is zero in the linear

approximation, it appears only due to the nonlinear wave
interaction. Therefore, to findϖz one should go beyond the
approximation. We take into account the main nonlinear
contribution to ϖz in Eq. (2), which is of the second order
in the wave amplitude:

ð∂2
z − κ̂2Þϖz ¼ −ν−1ϖα∂αvz: ð10Þ

The term on the right-hand side can be regarded as a source
with respect to ϖz. It corresponds to the rotation of two-
dimensional vector ϖα by the velocity field of the surface
waves. We keep the nonlinear terms of the same order in the
boundary condition (6):

∂zϖz ¼ ∂αh∂zϖα − ϵαγð∂αvβ þ ∂βvαÞ∂β∂γh: ð11Þ
Note that the second term on the right-hand side of Eq. (11)
is smaller than the first one in parameter γ. However, the
second term should be kept since it may give a comparable
contribution to the surface value of ϖz, because it can
produce a correction which has longer penetration depth;
see Ref. [7].
The solution of Eq. (10) with the boundary conditions

(11) (which can be posed at z ¼ 0) and ϖz → 0 at
z → −∞ is

ϖzðzÞ¼2ϵαβðek̂z∂αhÞðeκ̂z∂β∂thÞ
þ2ϵαβκ̂

−1eκ̂zð∂αh∂β∂tk̂hþ∂α∂γh∂β∂γ∂tk̂
−1hÞ; ð12Þ

where Eqs. (7)–(9) were used. The surface value of the
vorticity ϖz is obtained by substituting z ¼ 0 into the
expression (12). The first term in the expression (12)
represents the tilt of the vorticity (9) due to the surface
tilt. The first term in the last round brackets is the result of
spreading of rotated vorticity into the bulk. The last term
in the expression (12) is related to the nonzero curvature
of the surface, which gives rise to an additional viscous
tangential surface force.
Note that, according to Eq. (12), a single surface plane

wave does not produce ϖz, nonzeroϖz arises if at least two
plane waves propagating in different directions are excited.
The characteristic frequency ωv of vorticity ϖz can vary
from zero to the order of the surface wave frequency ω, since
we consider the nonlinearity of the second order. Ifωv ≫ νk2

then the first term on the right-hand side of Eq. (12) is
leading. Otherwise, both terms are of the same order.
Further, we analyze the case when the excited surface

waves are characterized by a narrow spectrum peaked nearω
with the width Δω ≪ ω. Then the slowly varying contri-
bution into the vertical vorticity ϖz is leading and thus
ωv ∼ Δω. Indeed, from Eq. (12) it follows that the relative
amplitude of double-frequency contribution is small as
Δω=ω; see Ref. [7]. Next, we assume ωv ≪ νk2. In this
case one can substitute κ̂ by k̂ in the second line of Eq. (12).
So, the first term on the right-hand side of Eq. (12) is
localized on the scale γ=k near the surface, while the second
term penetrates deeper, on distance 1=k. Both terms have
comparable magnitudes at the surface.
Let us formulate the applicability conditions for our

theory that is correct if the higher-order nonlinear terms
are small compared to the kept ones. We have to estimate the
nonlinear terms from Eq. (2) where the second-order terms
for the velocity, vð2Þ, have to be taken into account. From
Eq. (12) it follows that vð2Þ ∼ ωkh2. Therefore, the nonlinear
terms with vð2Þ are small if ðvð2Þ∇Þϖz ≪ νΔϖz. Thus, in the
case ωv ≲ νk2 we arrive at the condition kh ≪ γ, which is
stronger than the small steepness condition kh ≪ 1. The
condition can be rewritten also as κh ≪ 1.
Now we turn to the experimental part. To check the

theoretical predictions, we carried out experiments with a
rectangular cell filled with water. Surface waves were excited
in the cell by its shaking. The experimental setup for
measurements of the water surface motion are shown in
Fig. 1(a). The vessel, shaped as nearly squarewith sides from
40 to 50 mm and depth of 10 mm, is filled with distilled
water and is set horizontally with an accuracy of 1.5 degrees.
The water level is adjusted to form concave or convex
meniscus on the walls, Fig. 1(b). The vessel was fixed on a
platform performing harmonic oscillations with cyclic fre-
quency ω in the vertical direction. The oscillation amplitude
and frequency were specified by a computer-controlled
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external digital-to-analog converter. The acceleration was
measured by an accelerometer fixed on the vibroplatform.
The exciting frequency ω=2π in the range from 40 to 60 Hz
was in resonance with one of the surface eigenmodes of the
water in the vessel. The oscillation amplitude was smaller
than the threshold of the Faraday instability [1,6].
To visualize the surface motion, hollow glass spheres

from 10 to 30 mm in diameter were poured on the water
surface. The average density of the glass spheres was
insignificantly less than the water density. The slow motion
of particles was captured by a camera that took sequential
pictures of the water surface upon illumination. Then the
video of the slow surface motion was built from sequential
frames. The photographs were processed by the MatLab
program and the velocity field was built using the PIVlab
software package [8], then the vorticity was calculated in
accordance with the relation ϖz ¼ ∂xvy − ∂yvx.
A stationary pattern of standing capillary ripples is

formed within 1–2 s after turning on the excitation.
Simultaneously with the ripples, a square lattice of vortices
on the water surface originates. The whole picture remains
stable at least for several minutes. The results of the
experimental procedure are presented in Figs. 2 and 4
showing the vorticity ϖz averaged over time. The red color
corresponds to positive vorticity, the blue color corresponds
to negative vorticity, and the color scale determining the
vorticity value is also presented in the figures.
To explain the pictures, let us first note that the forces

exciting the waves are related to the water meniscus formed
near the walls. Therefore, the forces are localized near the
walls and free hydrodynamic equations can be used to
describe the water motion not very close to the walls. One
deals with nearly linear waves of a given frequency, the
amplitude of the waves is determined by the near-wall
forces and boundary conditions. Only waves propagating
perpendicular to the walls of the rectangular vessel are
excited. The resonant frequencies correspond to the waves
which wavelengths satisfy the condition for resonance: the

length of the vessel wall is equal to an integer number of
wavelengths up to some correction associated with the
near-wall area. The linear size of the vessels is small
enough so that the distance in frequency domain between
neighboring resonances is greater than the width of the
resonances. The waves propagating in different directions
are not excited since the power transferred from the
meniscus to the waves is zero in this case.
Figure 2 represents the vorticity observed in a nearly

square cell where the standing waves are excited in the X
and Y directions. Neglecting the wave damping, we can
model the elevation as

h ¼ H1 cosðωtÞ cosðkxÞ þH2 cosðωtþ ψÞ cosðkyÞ; ð13Þ

where k is determined by the dispersion law. The phase
shift ψ in Eq. (13) is related to the cell asymmetry, that
leads to different boundary conditions for the standing
waves in the X and Y directions. Changing the aspect ratio
of the cell one can affect the phase shift ψ . Substituting the
expression (13) into Eq. (12) we obtain

ϖzð0Þ ¼ −ð2þ
ffiffiffi

2
p

Þ sinψH1H2ωk2 sinðkxÞ sinðkyÞ: ð14Þ

The result is time independent. The sum of the rational and
irrational numbers corresponds to the sum of the two terms
in Eq. (12), which have different penetration depths. The
expression (14) is in a qualitative agreement with Fig. 2.
We also conducted experiments with a square cell, where

the phase shift ψ ≪ 1 and the vorticity distribution changes
significantly. To describe the situation one should take into
account the wave attenuation along the direction of wave
propagation due to the viscous damping. Details are
presented in the Supplemental Material [7].
The magnitude of the vorticity as a function of the wave

amplitude is plotted in Fig. 3. The surface elevation caused

(a)

(b)

(c)

FIG. 1. Experimental setup for registration of the water surface
motion. (a) The scheme of the setup: 1, vessel; 2, water; 3,
vibroplatform; 4, photo camera; 5, flashlight. (b) Concave or
convex meniscus is formed on the edge of walls depending on
amount of water used to fill the vessel. (c) Configuration of water
meniscus in square cell, which has walls of different height
designed to suppress generation of waves from a pair of adjacent
walls. Arrows show the direction of wave propagation.
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FIG. 2. Vorticity in a cell 50 × 49 mm2 where the surface
waves with frequency 42.7 Hz are excited. The observed chess-
like pattern of the vorticity field is consistent with the theoretical
expression (14), the periods of the pattern in the X and Y
directions are equal to the wavelength.
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by the waves was measured by the laser beam reflected
from the fluid surface. The size of laser projection on a
screen can be recalculated into the surface tilt amplitude
kH, where H is the amplitude of the largest wave. The
graph in Fig. 3 demonstrates the square dependence of
vorticity on the tilt amplitude, in accordance with our
theoretical expectations.
Figure 4 presents results of another experiment. In this

case the square vessel has walls of different height: two
adjacent walls are slightly lower than two opposite walls.
The vessel is filled with water exactly up to the edge of the
higher walls to avoid meniscuses there. On the lower walls
water forms a convex meniscus [see Fig. 1(c)]. Thus the
exciting forces are applied to the water solely at the lower
walls. Neglecting the effect of reflected waves, one can
roughly model the situation by running waves propagating
from low walls. Then the elevation is modeled as

h ¼ H1 cosðωt − kxÞ þH2 cosðωt − kyÞ: ð15Þ

Substituting the expression (15) into Eq. (12) one finds

ϖzð0Þ ¼ −ð2þ
ffiffiffi

2
p

ÞH1H2ωk2 sinðkx − kyÞ: ð16Þ

Note that the result is also time independent. Figure 4
demonstrates that the spatial wave damping is relevant. An
account of the damping corrects the expression (16), that
leads to a reasonable agreement between the experimental
data and the theoretical predictions [7].
To conclude, we have discovered a new mechanism of

surface vorticity generation related to the narrow viscous
layer formed by propagating surface waves. In particular,
this mechanism leads to surface mixing that can be
characterized by the diffusion coefficient D that is of the
fourth order in the wave amplitude, as for the direct action

of the waves on the fluid surface [9,10]. The problem
requires further research.
Although the experiments were performed in the capillary

range, our theoretical scheme is equally applicable to
the gravitational range. For instance, the suggested theory
can be used to analyze the solenoidal motion on the ocean
surface.
Increasing an amplitude of the cell shaking one can reach

threshold for the Faraday instability. Well above the thresh-
old, the surface waves are quite intensive, which results in
intense solenoidal motions of the fluid surface, for which the
dimensionless parameter κh≳ 1. Then the self-interaction of
solenoidal motions becomes relevant [11], which leads, in
particular, to the formation of an inverse energy cascade [4].
The results of our theoretical and experimental studies allow
one to better understand the phenomenon and to develop a
quantitative framework for it.
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