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DETAILS OF DERIVATION THE EXPRESSION FOR VORTICITY

As it was explained in the paper, in order to obtain the vorticity directed along Z−axis one should solve the equation

(∂2z − κ̂2)$z = −f, f = ν−1$α∂αvz (1)

with the boundary conditions

∂z$z(0) = [∂αh∂z$α − εαγ(∂αvβ + ∂βvα)∂β∂γh]z=0 , $z(−∞) = 0. (2)

Since the vorticity $α is located in a narrow layer near the water surface, then in the main order in k/κ = γ � 1 one can find:

f = 2ν−1εαβ∂α∂the
κ̂z∂β∂th, ∂z$z(0) = 2εαβ∂αh∂β∂tκ̂h, $z(−∞) = 0. (3)

The solution of the Eq. (1) is $z = eκ̂zA(z) + e−κ̂zB(z), where A′ = −κ̂−1e−κ̂z(f/2), B′ = κ̂−1eκ̂z(f/2). Integrating these
expressions and using relations (3) one obtains:

$z(z) = 2εαβ(∂αh)(eκ̂z∂β∂th). (4)

Note that the term always has small penetration depth 1/κ = γ/k � 1/k. In the case of slowly varying in time vorticity $z ,
i.e. ωv . νk2, the corrections to the expressions (3) in parameter γ can produce terms, which will have penetration depths of the
order of 1/k. One should keep these terms because due to integration they can give a comparable contribution to the vorticity
$z . Thus,

f = 2ν−1εαβ(ek̂z∂α∂th)(eκ̂z∂β∂th), ∂z$z(0) = 2εαβ(∂αh∂β∂tκ̂h+ ∂α∂γh∂β∂γ∂tk̂
−1h), $z(−∞) = 0, (5)

and finally we obtain:

$z(z) = 2εαβ(ek̂z∂αh)(eκ̂z∂β∂th) + 2εαβκ̂
−1eκ̂z(∂αh∂β∂tk̂h+ ∂α∂γh∂β∂γ∂tk̂

−1h). (6)

If ωv � νk2 then the first term in the Eq. (6) is leading. Otherwise, both terms are of the same order.

INTERACTION OF WAVES HAVING NARROW SPECTRUM

In the paper we are mainly interested in the value of vorticity $z at the water surface. Taking z = 0 in the Eq. (6) we obtain:

$z(0) = 2εαβ∂αh∂β∂th+ 2εαβκ̂
−1(∂αh∂β∂tk̂h+ ∂α∂γh∂β∂γ∂tk̂

−1h). (7)

Now we consider a case of two plane waves propagating in arbitrary directions. We assume that the waves have close frequencies,
that is ∆ω � ω, where ∆ω = ω1−ω2, ω = (ω1 +ω2)/2 and ω1, ω2 are frequencies of the waves. The elevation h of the water
surface

h(r, t) = H1 cos(k1r − ω1t) +H2 cos(k2r − ω2t), (8)

where Hi is amplitude of the wave and ki is 2d wave vector, which obeys a dispersion relation ω2
i = g|ki| + (σ/ρ)|ki|3

and i = 1, 2. Since the vorticity $z appears due to the nonlinearity of the second order one should expect contributions with
frequencies 2ω and ∆ω in the surface value of vorticity $z(0). To calculate the fast contribution (with frequency 2ω) we
should take into account only the first term in the right-hand side of Eq. (7), because the other term is smaller due to inequality
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FIG. 1: a) Experimentally measured vorticity $z(0) in a perfectly square cell filled by water where surface waves are excited by shaking the
cell. The phase shift ψ is sufficiently smaller than unity, i.e. ψ � 1, due to the cell symmetry. b) Theoretical predictions for vorticity $z(0)
based on the expression (11).

k/κ ∼ γ � 1. For the slow contribution (with frequency ∆ω) operator κ̂ can be estimated as κ ∼ (∆ω/ν + k2)1/2 and in the
case ∆ω . νk2 both terms in the right-hand side of Eq. (7) should be taken into account. Substituting (8) in (7) we obtain:

$z(0) = −H1H2|k1||k2| sin θ
{[

2ω + (ω1|k1|+ ω2|k2|)κ̂−1
]

sin(∆kr −∆ωt)−∆ω sin[2(kr − ωt)]
}

−H1H2|k1|2|k2|2 sin θ cos θ

(
ω1

|k1|
+

ω2

|k2|

)
κ̂−1 sin(∆kr −∆ωt),

(9)

where k = (k1 + k2)/2,∆k = k1 − k2 and θ is the angle between vectors k1 and k2. Note that the amplitude of contribution
with frequency 2ω is smaller than the amplitude of contribution with frequency ∆ω, their ratio ∼ ∆ω/2ω. We also would like
to pay attention that the vorticity $z(0) is proportional to sin θ. Thus, the waves propagating in the same or opposite directions
do not produce any vorticity $z(0).

VORTICITY IN THE PERFECTLY SQUARE CELL

The Fig. 1a represents the vorticity observed in a perfectly square cell 5.0× 5.0 cm2. The figure differs significantly from the
analogous figure for the near square cell which was presented and discussed in the paper. The difference is caused by the fact
that in the case of perfectly square cell the phase shift ψ is sufficiently less than unity. For this reason the vorticity amplitude
$z(0) becomes smaller (according to the expression (14) from the paper) and more sensitive to the surface wave pattern. As we
will show below, in this case the damping of surface waves plays an important role.

One can account the wave damping by modifying the dispersion relation: ω = −2iνk2 ± ωk, ω2
k = gk + (σ/ρ)k3. In our

experiment the frequency ω is real and it is set by the external shaker. So, to obey the dispersion relation the wave vector should
be complex, we denote Im[k] = α > 0 and it means that waves attenuate as a result of propagation. In the case the elevation can
be written in the form:

h =
H1

2

[
cos(kx− ωt)e−αx + cos(kx+ ωt)eαx

]
+
H2

2

[
cos(ky − ωt− ψ)e−αy + cos(ky + ωt+ ψ)eαy

]
, (10)

and substituting this expression to the Eq. (7) we obtain:

$z(0) =
(2 +

√
2)

4
H1H2ωk

2
[

sin(k(x+ y) + ψ)eαy−αx − sin(k(x− y) + ψ)e−αy−αx+

+ sin(k(x− y)− ψ)eαy+αx − sin(k(x+ y)− ψ)e−αy+αx
]
.

(11)

Note that the expression is distinct from zero even in the case ψ = 0. The result of numerical simulation based on expression
(11) is presented in the Fig. 1b. Qualitatively the Figs. 1a and 1b are in a good agreement.


