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Radiation-induced interaction of optical solitons in fibers with randomly varying birefringence
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We study propagation of solitons in optical fibers with randomly varying birefringence which results in
polarization mode dispersion. Due to the disorder, solitons emit radiation, i.e., the energy of the solitons is
partly transferred into the delocalized modes. The radiation serves as a mediator of the intersoliton interaction
leading to fluctuations of the soliton separations. We establish statistics of the fluctuations which is found to be
sensitive to the phase mismatches and mutual polarizations of the solitons, and independent of the soliton
separation. The theoretical results are justified by direct numerical simulations.
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I. INTRODUCTION ported a phenomenon which can be called “direct soliton

Optical lines are widely used for transmission of informa-Jitter.” While this effect is related to the direct impact of the

tion. Ideally, an information carried by optical pulses propa_disorder, there is another important feature in the soliton dy-

gating through optical fibers would be transmitted nondamN@mics, which is produced indirectly by the fiber imperfec-
ions. Due to the disorder, solitons shed “radiation,” that is,

aged. In reality, however, various impairments, emergin X : ; ,
naturally in the transmission media, perturb the signal, whichh€ sliton energy is partly transferred into the delocalized
can lead to unrecoverable information losses. In moderﬁmdes' The emitted rad!atlon spreadg out from the spllton
high-speed fiber communications, the noise induced by optid"d influences other solitons, producing an effective inter-
cal amplifiers and the birefringeﬁt disorder caused by ranSoliton interaction. Under certain circumstances, this effect is
I ) S . . more essential than the direct soliton jitter. Here, we focus
gl%nrx:.r(')?tg?sir']g ?):‘Il'mglgég;miisf;gﬁrf;iﬁf: Svflﬁi'lzntﬁéea%?mainly on this nondirect intersoliton interaction and analyze
/0 major orig > L ._its statistical properties related to the PMD disorder.
plifier noise is short correlated in time, the birefringence is

. ) 7 In this study, we assume that the PMD disorder is weak,
practically frozen since the characteristic temporal scale of nich is a necessary condition for successful information

the birefringence disorder is long compared to the signagransmission. In the presence of weak disorder, the soliton
propagation time through the entire fiber line. A frequencyparametergposition, width, polarization, phase, and phase
dependence of the birefringence leads to splitting the opticaje|ocity) undergo slow evolution along the fiber. On the
pulse into two polarization components which propagatesther hand, the delocalized modes are relatively fast since
with slightly different velocities. This effect, in turn, results there is a gap in the spectrum dividing the continuous spec-
in pulse broadening known as polarization mode dispersiorum from the modes corresponding to variations of the soli-
(PMD) [1-3]. Since the first report of this remarkable phe-ton parameters. This enables us to apply an adiabatic pertur-
nomenon, the PMD effect has been extensively studied exsation approach to find the evolution of the soliton
perimentally[4—9] as well as theoretically10-12. parameters and radiation. In the case of single-soliton propa-
In this paper, we investigate the role of the PMD impair- gation, we examine the radiation profile and derive a soliton
ment in the nonlinear regime of the information transmissionamplitude degradation law which is in accordance with one
when solitons are information carriers. Generally, the propapresented in Refi24]. Then, we make further progress and
gation of optical pulses is described by the coupled nonlineaprovide a role of the radiation shed by solitons. The major
Schrddinger equation derived in RdfL3]. However, one findings we report here concern fluctuations of soliton posi-
should note that the birefringent disorder leads to fast rantions in the regime where the soliton energy loss is still neg-
dom rotation of the principal axes of the polarization tensoiligible. The radiation emitted by solitons gives rise to inter-
along the fiber. Under certain conditions, this results in efsoliton forces leading to random variations of the soliton
fective averaging of the Kerr nonlinearif4—17. Then the separation. This effect is separation independertassume
signal propagation can be described in terms of the Manakothat the solitons are positioned far enough apart that no direct
equation[18]. The necessary conditions leading to this aver-interaction occuns We examine in detail this phenomenon in
aging process are established in R¢19-22. Here, we as- the context of the two-soliton evolution. Specifically, we pro-
sume that these conditions are well satisfied and therefore@jde the statistical characteristics of the intersoliton separa-
base our consideration upon the Manakov equation supplgion which can be treated as Gaussian jitter and its depen-
mented by the term responsible for the PMD effect. Thedence on the phase mismatch and polarizations of the
solitons (information carriery correspond to the stationary solitons. The extensive numerical simulations performed for
solutions of the unperturbed Manakov equation. In the prestwo (parallel and orthogongpolarizations and three differ-
ence of the PMD disorder, however, the stationary nature oént phase mismatches confirm our theoretical predictions.
solitons is disturbed. In Ref23], the authors studied a direct Then we discuss an extension of our results to the multisoli-
influence of the disorder on the soliton propagation and reton propagation. The main feature in the multisoliton case is
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an accumulation of the radiation effects discussed so far dU@quation,az\A/:i AV, with the initial condition\?(O)zi. Here-

to the separation independent intersoliton forces. ~  after, we use the notations, £ andW for the transformed

~ From the application point of view, this effect of radiation ypiects. We also neglect the variations of the chromatic dis-
investigated here can be potentially dangerous especially ifersjond (the effects related to these variations were exam-
Iong-dlsta_nce hlgh-sp_eed communication systems. In suced in Ref. [26]). Below, we use the dimensionless vari-
systems, information is composed of sequences of pulses. Agjes, assuming that the Kerr nonlinearitythe chromatic

we mentioned earlier, the soliton displacement accumulategispersiond and soliton width are rescaled to unities.

as the number of pulses increases. Consequently, this can ayeraging over the polarization rotations, we obtain the
produce an essential corruption of soliton patterns leading tg|jowing equation for the envelope of electromagnetic field
communication errors. describing signal propagation on scales larger than the bire-

The material in this paper is organized as follows. In Secfringence correlation lengttsee Refs[14—17 for more de-
I, the general theoretical setup is introduced. In Sec. lll, Weails),

investigate the single-soliton evolution. In Sec. 1V, the inter-
action of two solitons induced by radiation is analyzed. In__[(¥,\ . (¥, vy ) N4t
Sec. V, the results of direct numerical simulations are prel?z\ y, | *1Md| + W + 2| W2+ [P v
sented and compared to the theoretical predictions. Finally, z 2 z z
in Sec. VI, we summarize the main results of our analysis. (2.2)
Details of calculations are swept into appendixes.

0.

Here, the contribution related to the additive noise is omitted
(this contribution leads to the Elgin-Gordon-Haus effect
Il. GENERAL RELATIONS [27,28 and can be examined separajelgquation(2.2) is

The optical pulses propagating through a fiber can be det_he Manakov equation supplemented by an additional term

scribed by the envelopalr=(W,,¥,) of electromagnetic (with tt]e matrix M) responsible for the PMD effect. The
field. which is a two—componen,t complex quantity where Matrixmis a random Hermitian X 2 traceless matrix which

componentsV'; andV¥, stand for different polarization states can be written as
of the optical signal. With the birefringent distortion and am-

Mm=hy(2)oy + hy(2) o, + hg(2) o3, 2.3
plifier noise taken into account, the enveldffesatisfies the 1201+ oD +Ne(2)org 23
following equation[1,2,13,25: where g; are Pauli matrices anld(z) are real-valued func-
. tions of z.
W~ iAW - M2 G¥ - id(2FW- (4y/3)i|W[*¥ We aim to examine the evolution of the soliton parameters
- (2913)iWAW” = £(z,1). (2.2 averaged over the PMD disorder realizations. In the experi-

mental setup, that corresponds to averaging over different

Here and hereafter, asterisk denotes complex conjugation. fibers. Since the disorder gradually varies with time, such
Eqg. (2.1), z is the position along the fibet, is the retarded averaging process is equivalent to time averagifuy a
time (measured in the reference frame moving with the opgiven fibej over intervals much larger than the characteristic
tical signa), & represents the amplifier noisé,is the chro-  time of the disorder variations.
matic dispersion coefficient, anglis the Kerr nonlinearity. Since the correlation length scale of the random fields
The birefringent disorder is characterized by two randomh(z) is short and all observable quantities can be expressed
Hermitian 2x 2 traceless matrices andm (the latter one is  in terms of integrals along the line bf(z), one can apply the
related to the frequency dependence of the birefringencecentral limit theorem(see, e.g., Ref[29]) to the random
The disorder is frozen at least on all the propagation relateflelds. Hence,h;(z) can be treated as a Gaussian random
time scales, i.e., the matricés and m can be treated as  variable, that is, its statistics can be characterized by the first
independent. correlation functions

Notice that there is no damping or amplification in Eq.
(2.1). Such consideration is reasonable on scales larger than (h)=0, (hz)h(z))=D&dz-2), (2.4

the interamplifier distance and under the condition that th§ here D represents the disorder intensity afiel) denotes
arr;ph;‘:catlor;] prec[sely. compensateshenergyllllpss:asf. Then fe average over the disorder realizations. The zero mean of
only have the noisg in Eqg. (2.1, the amplifier leftover. h; and the isotropic character of its pair correlation function

Notice also that Eq(2.1) is valid for a restricted number of lated he f . duced by th o
optical channels since it is obtained by expanding the coefr related to the fast rotation produced by the matfiat

ficients responsible for the chromatic dispersion and the bithe transformationh— ViV ™. Since we consider the case
refringence near the carrier frequency. of weak PMD, i.e.,D<1, the integralH=/dzh(z) repre-
The random matrix term, containind(z), can be ex- S€nts the PMD vector. As a consequence of @), we

cluded from the consideration by passing to the referenclnd (H#)=3DZ V\{her?Z is the I{ne Iength..

frame rotating together with local polarization states of the N the real optical lines, the line length is much larger than

signal at the carrier frequencyllfe\hlllf §—>V§ and the sqllton width, nar_nelyz> 1. T_herefore, we foc_us on the
NN i A ' domainz> 1 (wherezis the coordinate along the fipeNote

— VMV, Here, the unitary matri¥/(2) is the ordered expo- that the producDz can be small or large, depending an

nential, Texp[ifédz’&(z’)], defined as the solution to the Here, we consider both cases.
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The original Manakov equation, i.e., E@.2) with m=0, v, R
is integrable and has exact solutions corresponding to |y, =ex 'a"'lfo dz 7(Z') +ip(t-y)

N-soliton profiles for¥ [18]. The PMD effect, however,

disturbs the exact solutions. Nevertheless, if the disorder is o 1 7
weak, then theh term in Eq.(2.2) can be treated as a small Xexp(~ivoap +iv0) 0/ costin(t-y)]
perturbation. Then there are solutions of this perturbed equa-
tion describing a set of localized pulses which we call, as for U1

13 ” 1 1 + . (3.1)
the “pure” Manakov equation, solitons. vy

Keeping in mind the nonlinear mode of the information
transmission, we consider sequences of well separated singléne two-component field=(v,,v,) in Eq. (3.1) describes
solitons, i.e., separations between the solitons are assumedttwe radiation emitted by the soliton due to the disorder. The
be essentially larger than their widths. Then the enveMfpe quantitiesy, a, B, y represent the amplitude, phase, phase
can be written as velocity, and position of the soliton, respectively, ang,
describe the soliton polarizations.

In the absence of the disordew, «, 8, and vy, are z
independent and/ is a linear function ofz: y=y,+23z
(wherey, is the initial soliton position Initially, =1, B
) _ ) =15,=0, in accordance with Eq2.6). The disorder causes
where the termsl,, describe the localized pulsesolitons 4 rjations of the soliton parameters along the line. Our aim is
and the contributio¥.,,, represents the delocalized part of ;1 fing the equations governing this evolution.
the optical signalradiation).

We assume that at the input of the optical liipesitioned
at z=0), the signals are generated by the ideal solitons with

the unitary widthgsolutions of the pure Manakov equation  The radiation fieldv has small amplitude because of the

V=>W +W,, (2.5
n

A. Linear approximation

Then atz=0, we have disorder weakness. Therefore, one can use the perturbation
expansion over the disordby and over the radiation field.
W, =coshi(t-yye,, (2.6)  This procedure can be constructed in spirit of the Kaup per-

turbation techniqué30].

In this section, we examine the linear approximation. This
implies that we consider the equations in the first order over
the disordeth; and the radiatiow. As we mentioned earlier,

and ¥.,,=0. Here,y, are the “positions’(in time) of the
solitons, andk, are the polarizations of the solitons satisfying

Lha?/ecgfzjelitlog)en\?vn;elr'e S?Sy:[hfgr Lgiellr;??;epgl)allirtlgr??nn d \Qfe the changes of soliton parameters are slow. Hence, the quan-
T @ P tities 7—1, B, vg 5, andy—y, which become nonzero due to

.f'rSt. axis of the reference system Is directed alolng.the pOIart'he disorder should be treated as small parameters in this
ization vector. The expressid@.6) serves as the initial con-

- framework. We assume that the initial soliton polarization is
dition to Eq.(2.2. b

) . . ._linear and the first axis of the reference system is directed
Propagating along the line, the solitons evolve and rad'aélong the polarization vector
tion is emitted due to the PMD disorder. Because of the By plugging the expressié(B 1) into Eq. (2.2 and lin-
disorder weakness, the soliton evolution is slow, and hencee e . AN o
. . - ) X o arizing the resulting equation near theperturbeg local-
its shape adjusts adiabatically to an ideal profile. Therefo g geq b u

re : - .
! ) . . . zed part of the solution, we obtain the following set of equa-
the soliton evolution can be described in terms of the solit P 9 q

on, PSP
parametergamplitude, position, phase, phase velocity, ané}Ions for the radiation field:

polarization gradually varying along the line. On the con- (vl) ~ (vy
idy\ & L1< )+

trary, the radiation evolves fast. Fortunately, due to the dis-
order weakness, the radiation can be examined in the frame-
work of the perturbation theory.

_ (h3>tanhx 3.2

vy U1 hs/ coshx’

We neglect the direct interaction between the solitons Cfva\ o~ (v, H \ tanhx
(since it is exponentially small if the solitons are well sepa- 10, o)t L, o )T g ) coshx? (3.3
rated whereas the interaction mediated by the radiation can 2 2
be relevant. Hereafter, this nondirect interaction is the prin-
cipal subject of our analysis. ~ - 2 A

pat Sub) y L1 = (- 1)y + —— (255 +i5), (3.4

cosltx
Ill. SINGLE SOLITON
L= (R Doat —2 (3.5
Since the solitons are assumed to be well separated, it is 27\ 737 oshx”® :

worth starting from the consideration of single soliton and

radiation in its vicinity. For convenience, we redefine thewhere x=t—y and the dots designate the terms originated
phase and the polarization of radiation in accordance witfrom the derivatives of soliton parameters. Here we intro-
the expressioli2.5): duced a complex field
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H(2) =hy(2) +ih,(2), (3.6) eigenfunctions of the operato(8.4) and (3.5) presented in

_ ) - _ Appendix A. Below we assume thgt=0, i.e., placing the
which possesses Gaussian statistics characterized by the pgdiiion position at the origin. The position fluctuations de-

correlation function scribed by Eq(3.9) are irrelevant for the problem. The rea-
(H'(z)H(z)) =2D8(z, - 2,). (3,77  sonis that in the linear approximation the position fluctua-
tions are decoupled from the radiation, and, consequently,
Recall thatD is the disorder intensity introduced by Eq. they influence the radiation in the second order over the dis-
(2.4. order, which is outside our approximation.
In order to solve Eqs(3.2) and(3.3), it is convenient to We find that the modes correspondingupare not ex-

expand the radiation field over the eigenfunctions of the cited in the first order ofy. Thus, in this approximation we
operatorsL; and L, [Egs. (3.4) and (3.5)] which are pre- only need to consider the fietdh. This component of radia-
sented in Appendix A. The eigenfunctions are separated intton field, v,, has the following expansion:

localized modegcorresponding to variations of the soliton

parametersand delocalized onegorresponding to the ra- (

diation). The operaton:1 has four localized modes, corre-

sponding to the parameteys 8, a, 7, and the operatok,  \\here o, G, are the eigenfunctions defined by Eda15)

has two ones, corresponding to the polarization paramete%d(Aj_G) anda, are complex-valued functions af Project-

vo, v2. Projecting Egs(3.2 and(3.3) onto the delocalized o e generalization of Eq3.3) onto the functionspy,,
eigenfunctions in accordance with the relatia#el0) and S,y ONe finds K
777

(Al17), one obtains the explicit equations for the expansion

* dk L
Z) :J_m ZT[ak‘Pk/n(’?U +a i, ()], (3.10

coefficients of the radiation field: da, . .
N iy o, 1+ Prac= b, H, (3.1
- = 2,8 = h3, d_ = 0,
dz z
_ mi(q+i) (3.12
d_“_o d_71_0 97 2 costimg/2) '
dz ' dz Solving Eq.(3.11), we obtain
dyy, dv z
—2=-—2-0. (3.9 a(2) = f dZ by (2 )H (Z)exdik*(z- ')
dz dz 0
This is the system of equations valid in the linear approxi- (7. ,
mation. +i| dz 7(2)]. (3.13

z

The solutions to Eq4.3.8) with the initial condition(2.6)
area=const,,8=0, =1, v5,=0, andy=[dz h;. Therefore, Considering the radiation far away from the soliton, i.e., in
we obtain the average over the disorder realizations the regiont> %, we find

(y>) =Dz, (3.9

reproducing the soliton jitter reported in R¢R23]. This ef-
fect can be called “direct jitter” since it is related to the direct
influence of the disorder on the solitons.

vz, 1) = % fo dz A )exd—i J dZ2)]

XI @7 (Z)2-2)HEZ),  (3.14

where

B. Radiation e 1+iq o2
In this section, we investigate the profile of radiation shed Jx,8) = f_m dqcosf(wq/2) e (349

by single soliton propagating along the line. In this case, the

source of radiation is localized at the soliton and the radiaA stationary phase calculation of the above integral yields

tion spreads in both directions from the soliton. We neglect

the secondary source connected with the radiation itself, T x| exp(ix?/4s)

which is justified by the weakness of the disorder leading to Jx.8) = \/j(1 _|2_s> cosh(mx/4s)’

small amplitude of the radiation. Thus, in the main approxi-

mation, the radiation can be examined in the first order ovewhich is valid ats>1.

the disorder. Equation(3.14 shows thav,, as a linear combination of
Here, we consider the regime where the soliton amplitudéd, possesses Gaussian statistics with zero average. There-

n can vary essentially during its propagation along the fiberfore, the stochastic properties of the radiation field can be

Then one needs to solve H&..2) linearized near the soliton characterized by its mean square fluctuations. Multiplying

with an arbitrary amplitude;. The eigenfunctions of the cor- two replicas of Eq(3.14) and averaging the result over the

responding linear operators can be obtained by rescaling thdisorder in accordance with Eq®.6) and(3.7), we find

(3.16
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Z_Efz A Yo ’ ! _ 5\1|2 d_?’]__Tl'_DfZ /7.772(2,) é’2+1
(od® =3 . dz 7"(2)| T (@)t 7 (2)(z- 2)]]%. 4z 2 ) 9z (z-7)2cosi(ml2)’

(3.19  wheret=1/[5(z')(z-2)]. Then, calculating the integral over

[0,z] (it can be extended fromosto + because of the
To examine the averag@.17) in more detail, we have to jnequality 7> 7) we obtain the equatiods/dz=-2D7%3/3
establish & dependence of the soliton amplitugewhichis  |eading to the solution
the subject of the following section. P
Note that above we neglected the terms originated from (2) = <1 + £z>

d,m. In other words, we used the adiabatic approximation for 7 '
the radiation. It is justified by the fact thatn appears in the
second order of the disorder whereas we examine the radi
tion field in the first order of the disorder.

(3.20

4hus, the soliton asymptotically decaysps z Y2 due to the
PMD disorder, which is in agreement with R¢R4]. It is
instructive to compare the la(8.20 with one caused by the
chromatic disorder which gives the asymptotic behawjor
C. Soliton degradation law xz Y4 [26].

In this section, we derive a degradation law for the single- Now we return to Eq(3.17). Using the expression for the

soliton propagation. Previously, we found that the amplitude so||ton amplitude(3.20, we can obtain the space and time

ependence of the mean square fluctuation of the radiation.
of the soliton remains unchanged in the linear apprommaﬂorﬁ X )
of the disorder. Therefore, to find the law, one has to take rom the formulag3.15 and(3.16), one finds the following

into account the second order of the disorder. Since we con expressmns in different spatial-temporal domains
sider essential variations of the amplitude, we need to use for

the radiation the adiabatic approach developed in the preced- Dz<1z>t>1: (v )= ?In(z/t),
ing section.
To establish the soliton degradation law, it is convenient
to start from the conservation law 2, Dt it
Dz<1t>z>1: (v ]d=—— - o)
z
WP =i0(W oW - WoW") — (T M), (3.18
5 o _ 3T DZ
_ _ Dz>1,2<7D: (|v,]?)= —I n—-,
following from Eq. (2.2). Now the localized nature of the t

soliton can be used. We first integrate both sides of Eq.

(3.18 over —r<t=<r1, wherer> 5. Then one finds that the J— 37

major contribution to the integral” dt|W(t)|2 comes from Dz>1,z>t>\ZD: (Jv ) = e @Y.
the soliton and hence, becomes. Zhe integral of the right-

hand side of Eq(3.18 involves the boundary value evalua-

tions. On the boundaries=—-7,7, we can keep only the ra- Dz>1t>z (|jv,d= iexp(— ﬂ)
diation term in the expressio3.1). Then we obtain 327

The above expressions show that the mean square fluctuation
/. i(v" o - 03w )|e, (3.19 of the rad_iation has the logarithmic profiletat zand decays
dz exponentially at>z.

Let us reproduce here a short qualitative explanation of
Here, we omitted the contribution related to the last term irthis behavior given in Ref26]. The radiation emitted by the
Eq. (3.18 and thet dependence of the factors in E@.1) soliton can be represented as a series of Fourier harmonics
since they are of the third order over the disortler with the frequenciek: v exp(—iNz+ikt). The dispersion

As it follows from Eq.(3.14), the right-hand side of Eq. law, valid for the propagation of the radiation in the linear

(3.19 is determined by the integrals of the random disorderregime, is\,=1+k? leading to the group velocitylt/dz
h; and, consequently, it is a self-averaging quantity. There=2k. Since the radiation source localized at the soliton ini-
fore, in the main approximation, the right-hand side of Eg.tially has the amplitude 1, Fourier harmonics have approxi-
(3.19 can be substituted by its average value. Plugging Eqmately equal amplitudes &t< 1, and their amplitudes dimin-
(3.14 into Eq. (3.19 and averaging over the disorder, we ish fast ak increases in the domak& 1. Therefore there is

find a small number of wave packets running more thaiz (this
explains the exponential decaytat z). The logarithmic de-
dy_Di pendence of the profile in the regiof z reflects the number
iz 4 dz 7MZ2)T 9.7, of wave packets reaching a giveémt somez.

We obtained the degradation lag@.20 for a single-
soliton propagation. It is clear that the same degradation law
where J=J[7(z')7, 7%(Z')(z=2')]. The function7 can be can be observed for a multisoliton pattern provided the soli-
approximated by its asymptotic val®.16), which yields tons are well separated. The reason is that the degradation
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law reflects the energy losses of soliton due to the imperfec- . X
Poh=—ReH fdt—coshxﬁtvz , (3.27)

tions of the fiber. This is evidently a “single-particle” pro-
cess. Notice that the soliton amplitude remains practically
unchanged in the regiobz< 1. Hereafter, our analysis is wherex=t-y. Since the integrals are determined by a narrow
focused on this domain, keeping a direct relation to the invicinity of the soliton, the integration overcan be extended
formation transmission in real optical lines. from —oo to +oo.
If we substitute the formul&3.14) (with »=1) into the
above expressions, then we obtain zero values of the contri-

D. Forces and impulses butions to the force and impulsexcluding the first-order
This section is devoted to the role of radiation in soliton "™ h3).' Thisisa man_ifegtation of the absence of the solliton
propagation. Assuming th&?z<1, we examine the evolu- self—actlon. For a multlsollton. pattern, however, the contnbg—
tion of soliton parameters under the action of the radiation.t'onitO tr?e forcg apd tof t?]e |mp|).ulse are non_z”e1ro, dﬁpengl'ng
For this purpose, we need an accuracy um)'(bjz). Again, on the characteristics of the soliton pattern. Thus, the radia-

o . ! ._ .. tion becomes a mediator of the intersoliton interaction. In the
we suppose that initially the soliton has linear polarlza'uon]c

. ) S llowing section, we examine in detail the interaction of
and that the first axis of the reference system is directed . - .

o Solitons and radiation at the onset of two-soliton pattern.
along the polarization.

Equation(3.8) shows that the equation for the soliton po-
sition y is coupled to the equation for the phase velogty [V. TWO SOLITONS
already in the first order ovér;, v. Thus, we need to find the
second-order corrections ovg v to the equations foy and
B. It also follows from Eq(3.8) that corrections tay, «, and
Vg, can appear only in the second order otgrSuch cor-
rections produce contributior@(hf) to the equations foy
and B3, which are negligible in our approximation. Therefore,
we can ignore these corrections, substitutipgl, vy ,=0,
and lettinga be some constant in the express{@nl). information losses
Expanding Eq(2.2) up to the second order ovey, v and ’

projecting the result onto the corresponding eigenfunctions we consuj?]r thhe sohton; 1_and 2 p(;]sllt;}o.nedy@tandd
of the operato(3.4) (see Appendix A we obtain Y2 (y2>Y1) with the separatiory=y,-y; which is assume

to be much larger than unity. Then, one can neglect the direct
interaction between the solitongvhich is exponentially

In this section, we consider two-soliton dynamics. From
Eqg. (3.20, one finds that solitons start to degrade in the
region z~1/D. Here, we focus on the domain<1/D
where the degradation effect is negligible and hence, the am-
plitudes of the solitons can be treated as unchanged. We are
mainly interested in the fluctuations of the separation be-
tween the solitons which can be a potential source of the

B _ small) and take into account only the interaction mediated by
dz =F =Pt Fopt Fon (3.2 the radiation. In the two-soliton dynamics, the contribution
W, in Eq. (2.5, related to the radiation, is a superposition
of two terms, corresponding to the radiation emitted by each
dy soliton. In this case the impulses and the forces applied to the
az_ hs+ P, P=2B+Py,+ Py, (3.22  solitons are nonzero. Below, we examine the soliton position

shifts induced by the radiation and their dependence on the

hase mismatch and polarization of the solitgwhich are

where both the first- and the second-order terms are kepgssumed to be linearly polarizedrhe phase mismatch
One can say thakt is the force acting on the soliton and that =a,-a, (Where a; and «, are phases of the solitonis

hs+P,,+ Py IS an extra impulse. The explicit expressions apitrary and we consider two cases: parallel and orthogonal
for the contributions to the force and to the impulse are polarizations.

Ty = ZJ dttanhx |Uz|2, (3.23 A. Solitons with parallel polarizations

costx We first consider the case when both solitons are initially

polarized identically. Then, the expressigh5) can be re-

written as
i =—Im(H*fdtwav ) (3.24) . . .
vh coshx ©2)’ ’ <W1> = expliz+iay) {exp(lﬁlxl)Jr expli Box, + W)](l)
v, ! coshx;) cosh(X,) 0
tanhx . U1
®,, =J dt__ o X[4|u1|2+v§+ )%,  (3.29 + <v2>}’ (4.7)

in spirit of Eq. (3.1). Here and hereafter;=t-y; and x,
=t-y,. In accordance with aforesaid, we set the amplitudes
X o .
=i | gt 2_52]. 3.26 m=7n,=1 and peglected thg degrees of freedom r_espon5|ble
P f cosit x[v1 )] ( ) for the fluctuations of polarizations. The phase mismatch
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can be treated as a parameter which does not undergwoperties of the forces and impulses starting from )
changes along the fiber. (the details of the analysis are presented in AppendixiBe
In order to obtain the forces and impulses in accordancaverage value ofF is exponentially smallproportional to
with Egs.(3.2D)—3.27), one needs to find the radiation field the factore™, wherey is the intersoliton separatipmand can
v, which can be examined in the linear approximation. Subbe neglected. The average valuefis D/4 [see Eq(B11)]
stituting the expressio@.1) into Eq. (2.2 and linearizing  which gives a systematic drithy, ,=(D/4)z of the soliton

the equation irv andh; (and neglectings;, 8,), we find positions. As we will show below, it is a subleading contri-
o bution to the variation of the separatiody. Thus, we focus
aZ(UZ) |222(v*2) =( )tanr(xl) ( I-*le _ )tant{xz) on the pair correlation functions of the quantities.
v, v, H*/coshx;) \H'e'®/coshxy,)’ For the impulse of the first soliton, we find
4.2
(P1(z0)P1(20)) = 4G, D’min(z;,2,), (4.6)

where the operato&z is a generalization of the operatf)g,

defined by Eq(3.5). Near the first solitonf, coincides with where the average value B is neglectedG; in Eq. (4.6) is

L2, and near the second SOIItOGg differs from Lz by some  a numerical constantS;=0.204. Now let usturn to the

phase factors. Similar to the single-soliton case, the compdiuctuation of the impulse differences between the soli-

nentv, is not excited in this approximation and hence, wetons. We find[see Eq.(B15)]

can neglect this component of the radiation field.
Again, we solve Eq(4.2) by expanding the field, over

the eigenfunctions of the operatdy, corresponding to the

delocalized solutions. The eigenfunctiogs of ﬁz can be
written as

([Pa(z1) - P1(z)] [P(2z0) = P1(25)])
=8[1 + cog2a)]G,D? min(z,,2,), 4.7

where the subscripts 1 and 2 correspond to the first and the
t<(y1+¥2/2, @u=eX), @x=eX), second solitons.
Now we establish the statistics of the fluctuatiofs,
_k+i iky 8Y,, and 8y of the soliton positiony,,y, and the separation
> (Y1+Y2)/2, qDk\l‘ﬁe' Pu(X2), y=Yy,—Yy;, respectively. As it follows from Eq(4.7), the
second-order moments are

_ k=i
o= k—+:e"ky¢k(x2), (4.3 ((8y12?) =3G,D?2+ Dz, (4.9

where the functionsp, and ¢, are introduced in Sec. Il of
Appendix A. In the region between the solitons, the expres- ((8y)?) = g[l +cog2a)|GD?Z. (4.9
sions(4.3) match well. Expanding, by the continuous spec-

trum only, we find Note that the termDz in ((dy; ,)?) is induced by the first-

s +2 dk . order contribution to the impulséyg, in the right-hand side
:f (AP + A Pi) (4.4)  of Eq.(3.22. This term corresponds to the express{ard).

*

U2 Equationg4.8) and(4.9) show that the relative position shift

wherea,, are complex-valued functions af is sensitive to the phase mismateh The systematic drift

Then, projecting Eq(4.2) to the eigenfunctiong4.3), we ~ AY1,,=(D/4)z of the soliton positions is negligible in com-
obtain parison to the typical fluctuation of the separatidy

~DZz? at z>1, which justifies neglecting the drift. Hence,
the typical displacement caused by the pair soliton interac-
tion is proportional toz*? which is similar to the Elgin-
Gordon-Haus jittef27,28|.

whereb, are defined in Eq(3.12. The solution of the above e remark that the high-order irreducible correlation

d k-
_ak\l - |(k2 +1ag =bH (Z)|:l + k_e Iky—la:|

equation is functions of the forceZ and the impulseP only produce
z small corrections to the moments 6y, , and dy provided
ay(2) = bkf dz exp{i(k2+ )(z-2)] z>1, Dz<1. Therefore, the fluctuations of soliton positions
0

possess Gaussian statistics, which can be completely charac-
K=i " . terized by Eqs(4.8) and(4.9).
X|1+——e"™ "' H(Z), 4.5
T @) (4.5
L B. Solitons with orthogonal polarizations
similar to Eq.(3.13.
Substituting the formulas (4.3«(4.5 into Egs. We now turn to the case when solitons have orthogonal
(3.23—3.27, we obtain explicit expressions for the forces polarizations. In this case, the expressi@nl) has to be
and impulses in terms df;. Then we can analyze statistical replaced by
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Wi L eXp(iﬂ’le)(l)
(\If) =expiz + Ial){—cosr(xl) 0

exp(iﬁ2x2+ia)(0> (vl>
¥ cosh(xy) )7 v/ )’ (4.10

again in spirit of Eq(3.1). Following a procedure similar to

one developed in the preceding section, we find

iaz(v3 ) * ﬁl(v*l ) = ihgfy(x,) +iH @7, (x,),
Uq U1

(4.11)

iaz(vf> + 2”(”3) =iA4(x)) - ihs®f,(x,),
U2 U2

(4.12

where

@»

|:|_<H o) _(ei“ 0)
- O H* y - O e_ia .

Here, f, is defined in Appendix A and the operatoff$ and

L, are linearized parts of Eqg2.2), analogous to the

operatorsf_lz [Egs.(3.4) and(3.5)]. Note that in the case
of orthogonal polarization, both components of the radia

tion field, v, andv,, are relevant.

Equationg4.11) and(4.12 can be solved after expanding
the fieldsv, andv, over the eigenfunctions of the operators

L, and L, respectively:

v * dk -

( *1) = J (@ fi +a fiy), (4.13
Ul —0 2’77

v ** dk .

( f) :f > (G ekl +C @x1),s (4.14
UZ — 2’77

wherea,  ,c,, are complex-valued functions af Here, the
eigenfunctions are

t<(y1+y2)/2, fo =flx), fio =filx),

K+i
t>(y1+y2))/2, fi, = Ee' Yor(Xa) (4.19

- k=i
fi = me 'k%k(xa,

t< (yl + yZ)/Z! P = QDk(Xl)! ()_DkJ_ = ak(xl) '

_(k+i)?

t>(y1+y2)/2, @ = Weiky”“@fk(xz),

PHYSICAL REVIEW B9, 046612(2004

ki
Pl = (k+|)2

e_iky_iaé?k(XZ) ’

(4.16

where fk,gok,fk,ak are defined in Appendix A. Again, the
expressions smoothly match in the region between the soli-
tons. Using the expressioi4.13 and(4.14), we find

4o i ki o
A 1€+ Dag =bH(@), e,

d . *
d_ZCkL -i(k?+ ey, =bH'(2),

andb, is defined in Eq(3.12. The solutions of Eq4.17)
are

(4.17

z k_| A B : ’
a, = bkf dZ,H(Z/)me_lky_lael(kZJrl)(z_z )’ (4.18)
0

z
e, = by f dZ H'(z') D7), (4.19

0
In the case of orthogonal polarizations, some terms in
Egs.(3.2) and(3.22 are found to be zero, see Appendix C.
An analysis made in this appendix shows that the main effect
related to the second-order terms is produced by the average
(Py)~D, leading to the systematic drifty; ,~0.6Dz. This

drift is negligible compared to the fluctuations of the posi-

tions. Therefore the term witlB, can be neglected in Eg.
(3.22 for y;. The termP,, can be also neglected in compari-
son withhs (see Appendix © As a result, we return to the
first-order equatio,y, =hs, and similarly,d,y,=-hs. Hence,
we obtain

((8y19% =Dz, (4.20

((8y)® =4Dz. (4.21)

Notice that the result4.20 coincides with Eq(3.9). In con-

trast to the parallel polarization case, there isaaepen-
dence in the second-order moments. We also note that the
terms proportional t@&® are absent. For more details of the
calculation concerning the forces and impulses, we refer the
reader to Appendix C.

Again, one can check that the high-order irreducible cor-
relation functions of the impuls® [see Eq(C12)] produce
small corrections to the moments 6y, , and dy provided
z>1,Dz<1. Thus, the fluctuations of soliton positions pos-
sess Gaussian statistics and can be completely characterized
by Egs.(4.20 and(4.2)).

C. Arbitrary polarizations

The forces and impulses in Eq8.21) and(3.22 consist
of the first-order(only h; term) and the second-order terms
of the disorderh;. The first-order term leads to the “direct
jitter” [23] of the solitons, determined by E@3.9). This
“direct jitter” is a single-soliton effect and is insensitive to
the soliton pattern. On the contrary, the second-order contri-
bution is responsible for the intersoliton interaction mediated
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by the radiation, and it is sensitive to the soliton pattern. ; Single soliton

So far, we have considered two special polarizations in ‘
the two-soliton evolution: parallel and orthogonal polariza- o9
tions. In both cases, the jitter of the intersoliton separation
occurs, and the fluctuatiofly possesses Gaussian statistics. 08
However, the mean squafédy)?) has, in accordance with
Eqgs.(4.9) and(4.21), essentially differenz dependence. For _
the parallel polarizationsdy~Dz%?, whereas for the or- gos
thogonal polarizationgy ~ (Dz)Y2. An explanation is that the 2
direct jitter is canceled in the parallel polarizations whereas& [
the intersoliton interaction is negligible in comparison with 4
the direct jitter in the orthogonal polarization.

In the general case, when the angle between the solitor 03
polarizations does not coincide with 0 a2, or when el-
liptic polarizations are consideredy still possesses Gauss-
ian statistics(at largez). However, both the first- and the o1
second-order terms appear in the forces and impulses. As
result, there are two different contributionspz and~D?Z°,
to ((8y)?), related to the direct jitter and to the soliton inter-  FIG. 1. Soliton amplitude as a function of the position along the
action, respectively. Therefore, a new scBie’? has to be fiber._The solid curve gives the numerical result for a r_ealizatio_n c_)f
introduced. liz<D~Y2 then the first-order terrdirect jitten the disorder. The dashed curve represents the theoretical prediction.
becomes dominant andy~ (Dz)Y2. If z=D1? then the

; ; ; D22 [In-
second-order termgnteraction prevail anddy~Dz**. Un the propagation length for a realization of the disordér;,

fortunately, it is a difficult task to find coefficients in the generated in accordance with Eq8.3) and (2.4) where D

general case. Nevertheless, the estimates fixztldepen- < . e .
dence of the typical fluctuation of the intersoliton separation_o'0225 was chosen. This choice is made to have a possibil

and determine its value for arbitrary polarizations ity to compare the numerical results with the theoretical pre-
' dictions in a wide range of the soliton amplitude. The solid

and dashed curves represent the computational result for a
representative realization of the disorder and the analytical
prediction from Eq(3.20), respectively.

In this section, we discuss the results of the direct numeri- NOW We turn to the two-soliton case. In F'gz‘ 2, we plot the
cal simulations based on E¢2.2) which have been per- Mean square soliton separation fluctuatiosy)?) as a func-
formed for the one- and two-soliton patterns. The initial con-tion of the propagation lengta in the case of the parallel
ditions are the perfect solitons determined by E46) (with ~ Polarization. Here, we take the noise intensiy=0.0125
the linear polarization and the statistics of the disorder is
determined by Eqg2.3) and(2.4). Recall that Eqs(2.2) and 0.25;
(2.6) are written in terms of the dimensionless units when the
Kerr nonlinearity, chromatic dispersion, and soliton width
are rescaled to unities. 0.2f

Since we aim to observe the soliton behavior in the long
haul transmission, the major obstacles in the computatior
result from the long time integration. As we have observed, 015
the perturbed solitons shed radiation and the radiation move®s
away from the solitons. In the computational domain, which ¥
is finite, the radiation interacts eventually with the artificial oar
boundariegexperiencing a reflectionand this causes spuri-
ous numerical results. In order to overcome these undesirabl
numerical artifacts we implement the so-called transparent
boundary conditions. We refer the reader to Re®] for
more details about these boundary conditions. Ll = ; . .

Utilizing the Runge-Kutta method supplemented by the % 50 100 150 200
transparent boundary conditions, we first investigate the z
single-soliton case and then the interaction of two solitons in - g, 2. parallel polarization case: mean square of the intersoli-
two different polarization cases. Specifically, we examine theon separatiod(dy)2) as a function of the position along the fiber.
degradation law in the single-soliton case and the statistics ofhe phase mismatches ate0, /4, and=/2. The dashed curves
the intersoliton interaction. The results are presented in Figsorrespond to the theoretical predictith9) and the solid ones are
1-3. Figure 1 is for the single-soliton case, and Figs. 2 and 3btained as a result of averaging over 40 realizations of the
correspond to the two-soliton case. disorder.

0.2

1 Il
500 1000 1500 2000
z

Figure 1 shows a dependence of the soliton amplitude on

V. NUMERICAL SIMULATIONS

Two solitons (parallel polarization)

0.05-
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09  Two solitons (orthogonal polarization) . ‘ shed by the solitons due to the disorder. This gives rise to
' random displacements of the solitons, which are Gaussian
08k random variables with zero average. The jitter is independent
of the soliton separation, which is due to one-dimensional
0.7 ‘ ‘ : ‘ ‘ M nature of the fiber. The negligible systematic drift is ex-
- plained by the reflectiveless character of the radiation scat-
08¢ ) tering on solitons in the integrable Manakov equation. This
n o5l it effect is in contrast to the nonintegrable case investigated in
”5 JPrae Ref. [31]. The results we presented in this paper are similar
Y04t e to ones obtained in the papgt6] for the chromatic disper-
e sion disorder, although the theoretical analysis for the PMD
03p Pl ‘ ' o disorder is more complex.
ozl o We demonstrated that due to the PMD disorder, soliton
' -7 loses its energy to radiation during propagation. The ampli-
04l B tude decays by the order of its initial value, at the distance
2 z~1/D (in our dimensionless units when the Kerr nonlin-

0% 100 200 300 400 500 600 700 800 900 ea_ri_ty, chromatic_dispersion, and soliton yvidth are resca}ed to
z unitie9 whereD is the strength of the disorder fluctuations

o _ _ (which is assumed to be weak:<1). Note that in the re-
.FlG' 8. Orthogonalzpolanzanon case: mean square of the Inter(::jion of strong degradation, the PMD disorder leads to faster
soliton separatioq(8y)¢) as a function of the position along the

fiber. The dashed ds 1o the th tical predicii degradation of the soliton than the chromatic dispersion dis-

toer. The dashed curve corresponds fo the theoretical predicliog,qa axamined in Ref[26] (the asymptotic laws for the

and the solid one is obtained as a result of averaging over 40 real- . . “12 "1 .

S ) soliton amplitude arexz ~'< and «z™*'%, respectively. We

izations of the disorder. . ) L . .
also established the profile of radiation emitted by the soli-

ton. The soliton degradation is negligible is a necessary

which is much smaller than in the single-soliton case. This isgndition for the successful information transmisgicat
because we need to observe the intersoliton dynamics in th§,< 1. Nevertheless. even for smalz. the soliton interac-

region where the soliton does not lose its energy signifiyion caused by radiation can be an essential source of the
cantly. The initial distance between the solitopg,needs to  jhformation losses.

be large enough to avoid the direct interaction between soli- |, aqdition to the soliton interaction there is a phenom-
tons. In this simulation, we takg=20. Each soliton position  enon called direct jitter of the solitorj23] which is a single-

is measured as reported in Rg26]. For the sake of com-  ggjiton effect, described by E¢3.9). If all the solitons have

parison, three different phase m'Smath“;@’?MﬂTéz are  the same polarization then the direct jitter causes identical
examined. For each, we average the fluctuationgy)® over  gisplacements of the solitons. Then an influence of the jitter
40 realizations of the disorder. The solid curves in Fig. 25 the detection of the information can be removed by a
represent the numerical results f@y)*) and the dashed simple compensation scheme known as “setting the clock.”

curves stand for the theoretical predictiqds9). For different polarizations, however, the direct jitter can lead
In Fig. 3, we plot the mean square soliton separation flucto significant information losses.
tuation ((dy)?) as a function of the propagation lengthin We examined in detail the evolution of two solitons

the case of the orthogonal polarization. We take the sampropagating in the same frequency channel. The soliton in-
noise intensityD=0.012% and the same initial separation teraction appears to be suppressed for the orthogonal polar-
Yo=20 as for the parallel polarizations. Each soliton positionizations when the direct jitter dominates. For the parallel
is measured as reported in REZ6]. The solid curve in Fig. polarizations, the direct jitter does not influence the soliton
3 represents the numerical result {9py)2) (averaged over separation and its fluctuatiody are determined by the soli-
40 realizations of the disordeand the dashed line stands for ton interaction, givingdy ~Dz*2. Note a remarkable phase
the theoretical predictiod.21). dependence of the soliton interactifsee Eq(4.9)], having

All the figures demonstrate a reasonable agreement be deep minimum at the phase mismateh#/2. Generally,
tween the theory and the numerics. Thus, our theoretical prdor arbitrary polarizations, both the direct jitter and the soli-
dictions are confirmed by the results obtained from the directon interaction contribute to the fluctuations of the soliton
numerical simulation of Eq2.2) with the initial conditions ~ separation, prevailing at differemt At z<D™'2? the direct

for the single- and two-soliton cases. jitter dominates, whereas at DY/ the intersoliton interac-
tion is the major effect.
VI. CONCLUSION We performed extensive direct numerical simulations for

the single- and two-soliton patterns, which confirm our the-
Let us summarize our major results concerning the role obretical predictions. The results of the simulations and their
radiation (continuous spectrupin the soliton (nonlineaj  comparison with the theory are presented in Figs. 1-3, which
mode of the optical signal propagation through a fiber withdemonstrate reasonable agreements between the numerics
randomly varying birefringenc@eading to the PMD effegt  and the theory.
The major effect reported in this paper is an emergence of Considering multisoliton case, we can treat radiatide-
the interaction between solitons, mediated by the radiatiofocalized modesas a superposition of contributions related

046612-10



RADIATION-INDUCED INTERACTION OF OPTICAL ... PHYSICAL REVIEW E 69, 046612(2004)

to each soliton. The reflectiveless character of the radiation - . 2 L

scattering on solitons, noted above, essentially simplifies the L= (- Daog+ m(zaﬁ i0p). (A3)
analysis, since the radiation emitted by a soliton monotoni-

cally spreads in both directions. This enables one to estimatg,;jgently,

“forces,” caused by the radiation, in the multisoliton pattern
via the forces obtained from the two-soliton case. The dis- =i sl =l [T=6ued A4
persion of the displacements induced by the intersoliton in- 1=k, oilior =Ly, L1=03li0s. (A4
teraction increases as the number of solitbihngrows in the The spectrum of the linear operator is determined by the

) ) . SR ; > P
fiber. In this case, the dispersion is proportional N&?, equationlL;f=\f. A general solution of this equation reads
whereN is the number of the solitons involved in the inter-

action. Since the numbeé\ is proportional toz (at a given 2ik exp—t) 0
average density of solitons in the pattewe reach the pro- fu=exdikt 1-—5——— ( )
portionality law oy o 72, (k+i)cosht) J\1

Now we discuss our results in connection with the soliton exp(ikt)
mode of the information transmission. We established that
the intersoliton interaction becomes the most dangerous
source of the information losses overcoming the direct jitter
Because of the dependendgx 72 the soliton interaction can T, ) )
be more essential than the Elgin-Gordon-Haus efeeeg.  functionsf=of, are also eigenfunctions af;:
We established that in the two-soliton case the interaction is ]
suppressed for the orthogonal polarizations and for the phase To=exd-ikt]{ 1+ 2ik exp(-1) (1)
mismatcha=m/2 in the case of parallel polarization. One k (k—1i)? cosht) | \O
can take advantage of these properties to reduce the soliton .

exp(—ikt) (1 o
—(1) A== (k"+1). (A6)

1
) M

wherek runs from - to +o. Due to the propertyA4), the

displacements and consequently, to minimize the information +
loss. In the real information transmission systems, however, (k=1)? cosH(t)

long sequences of solitons are used as information carriers. ) )

In this case, not all soliton pairs can achieve the mutuallhere are also bound states corresponding to marginally
orthogonal polarization or the phase mismatak=/2.  Stable modes:

Therefore, the random jitter caused by the soliton interaction

due to the PMD disorder can be the most essential error fo= 1 < 1 =
. . ' _ st 0= , A=0,
source in the high-rate information transmission systems. coshit) \-1
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Double poles ak=+i mean that two more functions must be

APPENDIX A: KAUP PERTURBATION TECHNIQUE added for closure, namely,

Here we present some technical details necessary for a
consistent derivation of the results formulated in the main f= t ( 1 ) [ f=_of (A8)
body of the paper. 27 cosit)\-1/" 12 L

1. Eigenfunctions of operatorlil t tanh(t) - 1(1 R

Let us recall some of the well-known properties in the 37 W(J’ Lifa= - 2fo. (A9)
perturbation near a single-soliton solution described by the
nonlinear Schrodinger equati¢80] Note that due to the propertp4), the left eigenfunctions of

—ig,W = PV + 22 (A1) the operatol; can be written as; &5, T 5. This leads to a

_ _ _ _ set of orthogonality conditions for the eigenfunctions. In an
We expand¥ near the single-soliton solutioWs,=expia  explicit form, the conditions can be written as
+iz)cosh}(t). Then, one can writ&V as

W =[cosh(t) +v]exdiz +ia]. f dt fo5f g = 2mo(k - 0), f dt fiosfq=—2mdk - q),
Using the above expression and EA1), we find - -
g P E4L) (AL0)
. v ~ [V
|<92( *)+L1< *>:0. (A2)
v v

+oo +o0
A f dt f;frgfl:Z, f dt f8&3f3:—2. (All)
Here the operatok; is — e
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2. Eigenfunctions of operatorI:2

We now present eigenfunctions of the operg®6b). The
set contains functions of the continuous spectiyip,, sat-

isfying

Lgc=(R+ Do Lige=—(+Dg. (Al2)
Evidently,
Lo=Ly dilooy=-Ly L=dulods  (AL3)
Therefore,
B= 1P Pk = 010 (A14)

There are also localized eigenfunctions which are zero

modes ofI:2, satisfyinglizgoovzzo.

The eigenfunctions corresponding to the continuous spec-

trum are
—(0)@ B = (1)513 (A15)
b= 1)k b= 0 —k»
~ k+itanht .
=——éX Al6
K K+ (A16)
We obtain the following orthogonality conditions:
+o0
f dt @55 = 278k — ),
+o0
f dt ¢ oaq =~ 2ok - 0), (A17)

analogous to EqA10). The zero modes of the opera(@:3)
can be written as

1 ~ 1 _
eolt) = <1> coshlt, @,(t)= (_ 1) cosh't. (A18)

They are normalized according to

J dt o3, = 4. (A19)

APPENDIX B: FORCE AND IMPULSE FOR PARALLEL
POLARIZATION
Using Eq.(4.4) and takinge, neary; from Eq.(4.3), one
can derive

dgdk . f tanhx
Ful@= Zf (2m? % I ost x
(k+i tanhx)(q=i tanhx) . .
T
dk . sink? x -1
fuh(z) - Im{H(Z) J ZTak”J dxm
e hxe"kx}- (82)

Integrating overx and plugging Eq.(4.5 into the above

equations, we find
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in dq dk (k2 - ¢?)2
Fo(2) = 26 f Sim{w(k_q)/z]cos}[wklz]cosiiwq/Z]

k-i el(q k)y}
k+|q—|

X[Ee—la |ky+ q+|e|a+|qy
K+i g-i

z
X f dz, dz, H'(z)H(z)e K+ 2eri(e 12
0

(B3)
- 7 kz + 1) k+ ik +Ia:|
R{f cosr?(wkIZ)[ el TR @
X f dle(zl)e‘i(kz"l)(Z‘Zl)}. (B4)
0

For the sake of convenience, we rewrite the foFeg as
d,P—(113)A, where

Pzzf dg dkk* - ¢?)
26 ) sinH 7(k - g)/2]cost wk/2]cosh mq/2]

% |:Ee—ia—iky + q_+ieia+iqy + EQ_Hei(q—k)y]
k+i q-i k+igq-i

z
X f dz,dz, H'(z)H(z,) g K*+V @20+ 1G-2)
0
(BS)

and, with an exponential accuracy,

To obtain Eq.B6), one has to take the integral overndq
omitting exponentially small terms. As it follows from Egs.
(3.24) and(3.27), the structure ofP,, is similar to one of the
forces, F,,. Integrating over, we find

_ 2 -
a m{fdk(k + 1)tanh( k/2)[k+|elky+m}

=—
th 16

cosH(mk/2) k—i

z
X H*(z)f dle(zl)e‘i(kz"l)(z‘zl)}. (B7)
0

Thus, one can rewrite Eq3.21) and(3.22 as

F=Fyp+ Fpy= 0P+ A,

z
dy=hs+P, 7?:2P+2f dZA(Z')+P,,. (B8)
0

1. Average force and impulse

Let us find the average of the forge%), over the disorder.
Using Eq.(B3) we obtain
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_iD dq dkk? - g?)? _ k(k®+1)
Fo = f sini 7(k - q)/2]cosi[wk/2]cosl[wq/2] (A=) = 64< < Re{ H(z) f dkcosﬁ(wk/Z)

X |:k__ie—|a—|ky+ g+ i e|a+|qy k e'<q Ky v K+i eikyﬂaf dz H(Z ) "(k2+1)(21‘21)
k+i g-i k+|q—| k—-i
i(1 _ei(kZ_qZ)Z) . f q(q +1) q-i _..
X—————. B9 X Rel H dg——F——~——e'¥"'¢
k?-g? (B9) @) Yeosi(k/2) q+i
Z
We take an integration contour surrounding poles, which are XJ 2dZéH*(Zé)é(q2+1)(Zz—Zé)] . (B12
not on the real axis. Then, we find th&,, is exponentially 0

small. Similarly, the average of the forcg, is also negli- . M- .
gible, and hence, the average of overall fofEen this ap- The _terms proportlona! FQHHXH _H ) vanish due to the
relation(3.7). The remaining term is

proximation is zero.
Now let us calculate the average of the impuieNotice 5 kg(k? + 1)(g? + 1)

that, due to Eqs(B4) and(B7), the averages of both and 5(21 2)D°R cosf‘?(wk/Z)cosﬁ(q-rq/Z)

P, are negligible,«cexp(—constxy) at anyz. Introducing

. - . k+ig- 1- —ip_psz
new variable.=k+q, one obtains _lu(_ )p-y e } (B13)
—ig+l p+p-
(P(2)) = WE f dp. dp- where(p,=k+q). The major contribution is formed at small
k=i _ _ q+i o 3 +1)2
x| S—gmiatiy(pspoi2 4 i atiy(p,—p_)/2 2 p(p

{k+,e tasic (A @A @) = 28z - ngJ; P oosi(mp2)
k-ig+i e_ip_y] i(1-€Pe) (B10) =0.20D%8(zy - 2,). (B14)
k+ig-i sini 7mp_/2]

The fluctuation of the differences between forces acting on

The main contribution to the above integral is originated atw?j solitons has an additional factof12+cod2a)], and we

small values ofp_. Since a-dependent terms are exponen-

tially small iny, we find that at largez, z>vy, the average a . ,
value of the total impulse is 4 . dz[AP(z) - AV(z)]
2
7D dp D XJd/ @(77y = AD (5
=— | ———=-. B11 [A(z) - AV ()]
(P@)="% J cost(mpld) 4 (B11) 0

=8G[1 + cog2a) D%z, (B15)

where the superscripts 1 and 2 denote the first and the second

solitons, respectively, and=min(z,,z,). Here G, is a nu-
Now we calculate the impulse fluctuatidiP?))=(P*)  merical factor,G,=0.204.

—(P)XP). First let us obtain the main contribution, coming  Now we evaluate additional contribution to the fluctua-

from A term in Eq.(B8). Using the relatior{B4) and taking tions of the impulse and position. First we examine the im-

F,n from Eqg. (B6), we find pulseP. Using Eq.(B5), we find

2. Impulse fluctuations

dk,dk_dq,da.(k2 - g?) (K2 — qQ)el (@ k2)¢

- k, — Ky
Q1)sinh77( 2 qZ)cosh—cosh—coshﬂcosh&

71_2 2
(PP == T [ —o

X[kl gty + 97 iy 4 k1+iq1—iH 21 gy s R ioniy k2+iq2—i

ky—i O +i ki—igp+i|| ko—i Qo +i kKo—iqp+i
Lo (1 —ekkeg) (1 - g2
x gk-y+id-y , B16
Kok 0.0 (B10

wherek, =k, +0,, 9. =k,0q;, Z=min(z;,2,), and {=|z;-z,|. Again, the terms proportional tHH)(H"H") vanish.
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We now let{=0 and calculate the simultaneous correlation and considedependent contributions to the fluctuation. One
of the contributions comes frome-independent terms in the square brackets of(Bd6). The main contribution to the above
integral is formed ak_,q_.~ 1/y, and hence, one obtains

(P2, = D f dk,da.(k? - g5)? 1
17 21 ], cosil wk,/4]cosK mq./4] k,q,sintf[ (k. — q.)/4]

(B17)

The other contribution comes fromdependent terms in the square brackets of (B46). This consists of two equal parts,
which are different from the previous contribution by the absence of one out of two oscillating factpr®irk_). Integrating
overk_, we find

2 42
e ((PA(2)) = WE [In z+ In(zly) + cog@)In(zly?)]
_m'D* [~ dk, do,dqg- 2
ye koSt /8 2ridg- X fw _dkke @ = 0.1432{Inz—2 + coia)ln%} .
X[1 - exfd-i9.:9-2)] o cost(mk/2) y y
[(k./2)* - qi][(k+/2 2-12] _ (B19)
8 (K, — 20,) (K, — 2k,) It is much smaller than EqB14) at largez.

To obtain the correlation af# 0, {<z, one should take
into account that the integr&aB16) is formed in the region
(B18)  where one of the variabldg, . is O(1) while the others are
much smaller than unity. Taking this into account, one de-

cosh—cosh—smr‘ 2 sinh 2

rives
The major contribution to the integral is formedkat~ 1 and {P(z)P(2))) = 0_1432[|nz—2 +CoSa In%}
small values ofg,. Now let us find thea-dependent contri- y y
bution to the fluctuation. The main part originates from the ©  dk )
product ofa-dependent and -independent terms in the right- X JO mcos{k 0. (B20)

hand side of Eq(B16). It is proportional to cogx multiplied
by the right-hand side of EqB18) with an extra factor The correlation vanishes algebraically as /1/and
[(ko+i)/(k,—i)]exdiy(g.+0-)/2] in the integral. Hence, [dZ{({P(2)P(z+{)))>1/y, which is negligible. At{~z one
the integration is formed oveq,, from q~1 up to q finds that the correlation is1/z2. This allows us to neglect
~1/y. We find that additionak--dependent contributions the contribution from the impulse to the position fluctua-
are ~1/y. Extracting the main contributions which are tions.

proportional to Ifiz/y) in Eq. (B17), In(2) in Eq. (B18), We now turn to the cross correlation. Integrating ogzer
and Inz/y?) in the a-dependent terms, one finds and using Eq(3.7), we derive

2D? J 9P+ 1) (K2 - K)o
P(z+ 0)A(2))) = - —Re) | didk.d
{P(z+ A 2)) 510 & 1diedq o™ sint m(k, — ky)/2]cosH mky/2)cosH mk,/2)
2
s .. _ -(kz— 2)
ki —ig+ii(1-e™ Z)e—i(kl‘Q)y , (B21)

><k1+iq—i (K2 - q?)

which is nonzero at>0. Now we extract the main part of the integral forming at small values, off and find

3p2 ac 1 i(p*-KA)¢
((P(z+§)A(z))):—7TZTRe Jko dp (p*+ ("~ K)e p— (B22)
0 cosiE 5 cosh—smhp—

Then we obtain
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Z __mD’ * (@ DEFRE - diPn)
(P(z+ Z)JO Mz)dz) =~ =5 Re{J koO dpcosﬁ(ﬂ-pIZ)cosm-rkIZ) Sinl‘[w(p—k)/z]}' (B23)

The simultaneous correlation, i.e., the correlatiod=a0, is 1 ]} ©3
+ .
7D2? (* dp.(p%/4 + 1) ) cosif x
~ w0 cost(mp./2) ~—-0.09D". (B24)
0 P+ Integration overx leads to
Thus, the cross correlation is negligible. .
Let us discuss remaining contributions to the impulse _ [ dk dgiay, ag, (K= A1 +K*+kqg+ )
fluctuations. The pair correlation function of the extra im- o | o4 (k+0)%(q—i)2sinH m(k - q)/2]
pulse P,y is =0.78D25(zy~2,), similar to Eq.(B14). The
corresponding contribution to the position fluctuation is (C4
«D?z and can be omitted. Its cross correlation withis
small because we take imaginary part in E8j24) and real dk dai 2 2. 42
. . L . . qlakj_aqj_(k"—q) (1 +k +q kq) 2 2

art in Eq.(3.24. This distinction leads to an expression & :f . o 2+k+ ).

P 9. (3.29 P =) a8r (k+i)2q+i)sina(k+ 2] | @)

analogous to Eq(B13) but with imaginary part of the inte-
gral, which is negligible. The simultaneous cross correlation (CH
betweenP,,, and P is similar to Eq.(B21) with an extra

factor (7/2g)tanh(7rq/2) in the integrand and taking the Substituting here the expressi®h18, we obtain
imaginary part of the integral instead of the real part. Then,

we find that it is negligible in comparison with E¢B24). i J dk dgqk? - g?)2(1 + K%+ ¢ + ko)
\/Sv:r?lrﬁ;réz&n(%tg)e results obtained so far and using(B#j4), (O 3x 25) cosliaki2lcost mg/2]sin w(k—q)/2]

z
x J dz,dz,H(z)H' (2@ (D E-i(@17)

APPENDIX C: FORCE AND IMPULSE IN ORTHOGONAL 0
POLARIZATION CASE k—-i q+i i(q-Ky
In this case, we have only the forek,, and the extra X (k+i)2(q—i)zel , (C6)
impulseP,, nonzero. Therefore, Eq$3.21) and(3.22 are
reduced to
d q o, Jdkdc{k+q)2(1+k2+q2—kq)(2+k2+q2)
d_z’Bl =d,,, d_zyl =hy+ 2B, +P,,. (C) 173x 26 cosh{mk/2)cosH mg/2)sinH m(k + q)/2]
z
First we examine the force. We represehf,=®dq+®, X f dzdzH(z))H' (z,) ¢ K+ DE2)-i@+)E2)
+®, where®, and®, contain the fieldH only in the form 0
of H'H andHH, respectively. Then, one can find, using Egs. k=i i _
! q-! —i(g+k)y—2ia
(4.13 and(4.15, “kx Qi : (C7)
~ tanhx [ dg dke"%a,  a;,
Oy = 2 cosiix 2m2 (k+i)2(q-i)2 ]'cll'aging integral and omitting exponentially small terms we
in
2[(g-i tanhx)?+ (k+i tanhx)?
x{ [(g—i tanhx)“+ (k+i tanhx) ]+4cosﬁ4x+4(q
cosltx z N
f dzZ®,,(z') =Py+ Py + Py, (C8)
—i tanhx)?(k +1i tanhx)z}, (C2) 0
tanhx [ dq dkeikx+iqxakiaql 1 Py = w f dk qu2 - q2)(1 +K2 + q2 +kg)
<I>1:f Xy o (kr 2q+ V2| cos x 3x 2°) cosiwk/2]cosh mq/2]sinH 7(k - g)/2]
z
L P L I ]+ [(k+ i)2 % J dz,dzH(z)H' (z)g D Ei@DE2)
cost x| 9coshx " cosh x 0
_ _ k=i qg+i
e . e X gawy (C9)
- 2ik + +i)2=2 2T 2 ,
N coshx " cosi? x]{(q ) 9 coshx (k+D)™(a=1)
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bo T f dk dok+q)%(1 +k?+ g% - ko)
17 3x 28 ) cost{mk/2)cosi{mq/2)sind m(k + q)/2]

z
x f dz,dz,H(z)H(z) €26 (2)
0
i ol
k=i a-i
(k+)?(q+i)?

The extra impulséP,, can be represented as

—i(q+k)y—2ia. (C].O)

. J dkdq a8 (k+a)k=0)?
v 247 (k—-i)%(q+i)?sinf m(k - q)/2]

x{4(q -k) + a{(k—-q)?+ 4]cotM}

(C1y

Thus, in the orthogonal polarization case, we can rewrite EqQ.

(3.22 as

d
_y:h3+7):h3+2p0+4 del)+7)uv-

™ (C12)

1. Average impulse

PHYSICAL REVIEW B9, 046612(2004

k k_z
—ik_y

<P°>'_f dk. d smh(m/z)
o Lrk+a’+kg  (k=i) (@+])
cosh(mki2)cosi7q/2) (k+i)% (q—i)?’
(C13)

The integral is formed at small values lof, and we obtain

_mD 1+ 3k12L/4
Po= 24 L dk*(l +K/4)cos(mk,/4)

The average of the impulsg,, is (k,=k*q)

k+i 'k_
(P, = 9610' dq(q+—|)2 ko i2° Y

1- e—|k+k_z
XY=
i sinh(7k_/2)

k_
{— Ak + (ke + 4)coth%

~0.13D. (C15

_mD J dp
12 )y (1+p?) cosH(mp/2)
Thus, the total average impulse is

(P)=2(Pg) +(P,,) = 0.6D. (C16)

As it follows from Eq. (3.6), the average value of the The impulse contribution to the fluctuation of the soliton

impulseP; is zero. Therefore, one only needs to exanifge

andP,, terms. Using Eq(3.7) one can obtairtk,=k+q)

positions is of the order db? and is negligible in compari-
son with the contributiorDz, coming fromh; in Eq. (C12.
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