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We study propagation of solitons in optical fibers with randomly varying birefringence which results in
polarization mode dispersion. Due to the disorder, solitons emit radiation, i.e., the energy of the solitons is
partly transferred into the delocalized modes. The radiation serves as a mediator of the intersoliton interaction
leading to fluctuations of the soliton separations. We establish statistics of the fluctuations which is found to be
sensitive to the phase mismatches and mutual polarizations of the solitons, and independent of the soliton
separation. The theoretical results are justified by direct numerical simulations.
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I. INTRODUCTION

Optical lines are widely used for transmission of informa-
tion. Ideally, an information carried by optical pulses propa-
gating through optical fibers would be transmitted nondam-
aged. In reality, however, various impairments, emerging
naturally in the transmission media, perturb the signal, which
can lead to unrecoverable information losses. In modern
high-speed fiber communications, the noise induced by opti-
cal amplifiers and the birefringent disorder caused by ran-
dom variations in ellipticity of the fiber cross section are the
two major origins of the transmission failure. While the am-
plifier noise is short correlated in time, the birefringence is
practically frozen since the characteristic temporal scale of
the birefringence disorder is long compared to the signal
propagation time through the entire fiber line. A frequency
dependence of the birefringence leads to splitting the optical
pulse into two polarization components which propagate
with slightly different velocities. This effect, in turn, results
in pulse broadening known as polarization mode dispersion
(PMD) [1–3]. Since the first report of this remarkable phe-
nomenon, the PMD effect has been extensively studied ex-
perimentally[4–9] as well as theoretically[10–12].

In this paper, we investigate the role of the PMD impair-
ment in the nonlinear regime of the information transmission
when solitons are information carriers. Generally, the propa-
gation of optical pulses is described by the coupled nonlinear
Schrödinger equation derived in Ref.[13]. However, one
should note that the birefringent disorder leads to fast ran-
dom rotation of the principal axes of the polarization tensor
along the fiber. Under certain conditions, this results in ef-
fective averaging of the Kerr nonlinearity[14–17]. Then the
signal propagation can be described in terms of the Manakov
equation[18]. The necessary conditions leading to this aver-
aging process are established in Refs.[19–22]. Here, we as-
sume that these conditions are well satisfied and therefore,
base our consideration upon the Manakov equation supple-
mented by the term responsible for the PMD effect. The
solitons (information carriers) correspond to the stationary
solutions of the unperturbed Manakov equation. In the pres-
ence of the PMD disorder, however, the stationary nature of
solitons is disturbed. In Ref.[23], the authors studied a direct
influence of the disorder on the soliton propagation and re-

ported a phenomenon which can be called “direct soliton
jitter.” While this effect is related to the direct impact of the
disorder, there is another important feature in the soliton dy-
namics, which is produced indirectly by the fiber imperfec-
tions. Due to the disorder, solitons shed “radiation,” that is,
the soliton energy is partly transferred into the delocalized
modes. The emitted radiation spreads out from the soliton
and influences other solitons, producing an effective inter-
soliton interaction. Under certain circumstances, this effect is
more essential than the direct soliton jitter. Here, we focus
mainly on this nondirect intersoliton interaction and analyze
its statistical properties related to the PMD disorder.

In this study, we assume that the PMD disorder is weak,
which is a necessary condition for successful information
transmission. In the presence of weak disorder, the soliton
parameters(position, width, polarization, phase, and phase
velocity) undergo slow evolution along the fiber. On the
other hand, the delocalized modes are relatively fast since
there is a gap in the spectrum dividing the continuous spec-
trum from the modes corresponding to variations of the soli-
ton parameters. This enables us to apply an adiabatic pertur-
bation approach to find the evolution of the soliton
parameters and radiation. In the case of single-soliton propa-
gation, we examine the radiation profile and derive a soliton
amplitude degradation law which is in accordance with one
presented in Ref.[24]. Then, we make further progress and
provide a role of the radiation shed by solitons. The major
findings we report here concern fluctuations of soliton posi-
tions in the regime where the soliton energy loss is still neg-
ligible. The radiation emitted by solitons gives rise to inter-
soliton forces leading to random variations of the soliton
separation. This effect is separation independent(we assume
that the solitons are positioned far enough apart that no direct
interaction occurs). We examine in detail this phenomenon in
the context of the two-soliton evolution. Specifically, we pro-
vide the statistical characteristics of the intersoliton separa-
tion which can be treated as Gaussian jitter and its depen-
dence on the phase mismatch and polarizations of the
solitons. The extensive numerical simulations performed for
two (parallel and orthogonal) polarizations and three differ-
ent phase mismatches confirm our theoretical predictions.
Then we discuss an extension of our results to the multisoli-
ton propagation. The main feature in the multisoliton case is
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an accumulation of the radiation effects discussed so far due
to the separation independent intersoliton forces.

From the application point of view, this effect of radiation
investigated here can be potentially dangerous especially in
long-distance high-speed communication systems. In such
systems, information is composed of sequences of pulses. As
we mentioned earlier, the soliton displacement accumulates
as the number of pulses increases. Consequently, this can
produce an essential corruption of soliton patterns leading to
communication errors.

The material in this paper is organized as follows. In Sec.
II, the general theoretical setup is introduced. In Sec. III, we
investigate the single-soliton evolution. In Sec. IV, the inter-
action of two solitons induced by radiation is analyzed. In
Sec. V, the results of direct numerical simulations are pre-
sented and compared to the theoretical predictions. Finally,
in Sec. VI, we summarize the main results of our analysis.
Details of calculations are swept into appendixes.

II. GENERAL RELATIONS

The optical pulses propagating through a fiber can be de-
scribed by the envelopeC=sC1,C2d of electromagnetic
field, which is a two-component complex quantity where
componentsC1 andC2 stand for different polarization states
of the optical signal. With the birefringent distortion and am-
plifier noise taken into account, the envelopeC satisfies the
following equation[1,2,13,25]:

]zC − iD̂szdC − m̂szd]tC − idszd]t
2C− s4g/3di uCu2C

− s2g/3diC2C* = jsz,td. s2.1d

Here and hereafter, asterisk denotes complex conjugation. In
Eq. s2.1d, z is the position along the fiber,t is the retarded
time smeasured in the reference frame moving with the op-
tical signald, j represents the amplifier noise,d is the chro-
matic dispersion coefficient, andg is the Kerr nonlinearity.
The birefringent disorder is characterized by two random

Hermitian 232 traceless matricesD̂ andm̂ sthe latter one is
related to the frequency dependence of the birefringenced.
The disorder is frozen at least on all the propagation related

time scales, i.e., the matricesD̂ and m̂ can be treated ast
independent.

Notice that there is no damping or amplification in Eq.
(2.1). Such consideration is reasonable on scales larger than
the interamplifier distance and under the condition that the
amplification precisely compensates energy losses. Then we
only have the noisej in Eq. (2.1), the amplifier leftover.
Notice also that Eq.(2.1) is valid for a restricted number of
optical channels since it is obtained by expanding the coef-
ficients responsible for the chromatic dispersion and the bi-
refringence near the carrier frequency.

The random matrix term, containingD̂szd, can be ex-
cluded from the consideration by passing to the reference
frame rotating together with local polarization states of the

signal at the carrier frequency:C→ V̂C ,j→ V̂j, and m̂

→ V̂m̂V̂−1. Here, the unitary matrixV̂szd is the ordered expo-

nential, Texpfie0
zdz8D̂sz8dg, defined as the solution to the

equation,]zV̂= iD̂V̂, with the initial conditionV̂s0d=1̂. Here-
after, we use the notationsm̂, j, andC for the transformed
objects. We also neglect the variations of the chromatic dis-
persiond (the effects related to these variations were exam-
ined in Ref. [26]). Below, we use the dimensionless vari-
ables, assuming that the Kerr nonlinearityg, the chromatic
dispersiond, and soliton width are rescaled to unities.

Averaging over the polarization rotations, we obtain the
following equation for the envelope of electromagnetic field
describing signal propagation on scales larger than the bire-
fringence correlation length(see Refs.[14–17] for more de-
tails),

i]zSC1

C2
D + im̂]tSC1

C2
D + ]t

2SC1

C2
D+ 2suC1u2 + uC2u2dSC1

C2
D = 0.

s2.2d

Here, the contribution related to the additive noise is omitted
sthis contribution leads to the Elgin-Gordon-Haus effect
f27,28g and can be examined separatelyd. Equations2.2d is
the Manakov equation supplemented by an additional term
swith the matrix m̂d responsible for the PMD effect. The
matrix m̂ is a random Hermitian 232 traceless matrix which
can be written as

m̂= h1szds1 + h2szds2 + h3szds3, s2.3d

where ŝi are Pauli matrices andhiszd are real-valued func-
tions of z.

We aim to examine the evolution of the soliton parameters
averaged over the PMD disorder realizations. In the experi-
mental setup, that corresponds to averaging over different
fibers. Since the disorder gradually varies with time, such
averaging process is equivalent to time averaging(for a
given fiber) over intervals much larger than the characteristic
time of the disorder variations.

Since the correlation length scale of the random fields
hiszd is short and all observable quantities can be expressed
in terms of integrals along the line ofhiszd, one can apply the
central limit theorem(see, e.g., Ref.[29]) to the random
fields. Hence,hiszd can be treated as a Gaussian random
variable, that is, its statistics can be characterized by the first
correlation functions

khil = 0, khjsz1dhksz2dl = Dd jkdsz1 − z2d, s2.4d

whereD represents the disorder intensity andk¯l denotes
the average over the disorder realizations. The zero mean of
hj and the isotropic character of its pair correlation function

are related to the fast rotation produced by the matrixV̂ at

the transformationm̂→ V̂m̂V̂−1. Since we consider the case
of weak PMD, i.e.,D!1, the integralH =edz hszd repre-
sents the PMD vector. As a consequence of Eq.s2.4d, we
find kH2l=3DZ whereZ is the line length.

In the real optical lines, the line length is much larger than
the soliton width, namely,Z@1. Therefore, we focus on the
domainz@1 (wherez is the coordinate along the fiber). Note
that the productDz can be small or large, depending onz.
Here, we consider both cases.
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The original Manakov equation, i.e., Eq.(2.2) with m̂=0,
is integrable and has exact solutions corresponding to
N-soliton profiles forC [18]. The PMD effect, however,
disturbs the exact solutions. Nevertheless, if the disorder is
weak, then them̂ term in Eq.(2.2) can be treated as a small
perturbation. Then there are solutions of this perturbed equa-
tion describing a set of localized pulses which we call, as for
the “pure” Manakov equation, solitons.

Keeping in mind the nonlinear mode of the information
transmission, we consider sequences of well separated single
solitons, i.e., separations between the solitons are assumed to
be essentially larger than their widths. Then the envelopeC
can be written as

C = o
n

Cn + Ccon, s2.5d

where the termsCn describe the localized pulsesssolitonsd
and the contributionCcon represents the delocalized part of
the optical signalsradiationd.

We assume that at the input of the optical line(positioned
at z=0), the signals are generated by the ideal solitons with
the unitary widths(solutions of the pure Manakov equation).
Then atz=0, we have

Cn = cosh−1st − ynden, s2.6d

and Ccon=0. Here,yn are the “positions”sin timed of the
solitons, anden are the polarizations of the solitons satisfying
the conditionen

*en=1. Say, for the linear polarization we
havee=seia ,0d, wherea is the phase of the soliton and the
first axis of the reference system is directed along the polar-
ization vector. The expressions2.6d serves as the initial con-
dition to Eq.s2.2d.

Propagating along the line, the solitons evolve and radia-
tion is emitted due to the PMD disorder. Because of the
disorder weakness, the soliton evolution is slow, and hence,
its shape adjusts adiabatically to an ideal profile. Therefore,
the soliton evolution can be described in terms of the soliton
parameters(amplitude, position, phase, phase velocity, and
polarization) gradually varying along the line. On the con-
trary, the radiation evolves fast. Fortunately, due to the dis-
order weakness, the radiation can be examined in the frame-
work of the perturbation theory.

We neglect the direct interaction between the solitons
(since it is exponentially small if the solitons are well sepa-
rated) whereas the interaction mediated by the radiation can
be relevant. Hereafter, this nondirect interaction is the prin-
cipal subject of our analysis.

III. SINGLE SOLITON

Since the solitons are assumed to be well separated, it is
worth starting from the consideration of single soliton and
radiation in its vicinity. For convenience, we redefine the
phase and the polarization of radiation in accordance with
the expression(2.5):

SC1

C2
D = expFia + iE

0

z

dz8h2sz8d + ibst − ydG
3exps− in0ŝ2 + in2ŝ1dFS1

0
D h

coshfhst − ydg

+ Sv1

v2
DG . s3.1d

The two-component fieldv=sv1,v2d in Eq. s3.1d describes
the radiation emitted by the soliton due to the disorder. The
quantitiesh, a, b, y represent the amplitude, phase, phase
velocity, and position of the soliton, respectively, andn0,2
describe the soliton polarizations.

In the absence of the disorder,h, a, b, and n0,2 are z
independent andy is a linear function ofz: y=y0+2bz
(where y0 is the initial soliton position). Initially, h=1, b
=n0,2=0, in accordance with Eq.(2.6). The disorder causes
variations of the soliton parameters along the line. Our aim is
to find the equations governing this evolution.

A. Linear approximation

The radiation fieldv has small amplitude because of the
disorder weakness. Therefore, one can use the perturbation
expansion over the disorderhj and over the radiation fieldv.
This procedure can be constructed in spirit of the Kaup per-
turbation technique[30].

In this section, we examine the linear approximation. This
implies that we consider the equations in the first order over
the disorderhj and the radiationv. As we mentioned earlier,
the changes of soliton parameters are slow. Hence, the quan-
tities h−1, b, n0,2, andy−y0 which become nonzero due to
the disorder should be treated as small parameters in this
framework. We assume that the initial soliton polarization is
linear and the first axis of the reference system is directed
along the polarization vector.

By plugging the expression(3.1) into Eq. (2.2) and lin-
earizing the resulting equation near the(unperturbed) local-
ized part of the solution, we obtain the following set of equa-
tions for the radiation fieldv:

i]zSv1

v1
* D + L̂1Sv1

v1
* D + ¯ = Sh3

h3
D tanhx

coshx
, s3.2d

i]zSv2

v2
* D + L̂2Sv2

v2
* D + ¯ = S H

H* D tanhx

coshx
, s3.3d

L̂1 = s]t
2 − 1dŝ3 +

2

cosh2x
s2ŝ3 + iŝ2d, s3.4d

L̂2 = s]t
2 − 1dŝ3 +

2

cosh2x
ŝ3, s3.5d

where x= t−y and the dots designate the terms originated
from the derivatives of soliton parameters. Here we intro-
duced a complex field
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Hszd = h1szd + ih2szd, s3.6d

which possesses Gaussian statistics characterized by the pair
correlation function

kH*sz1dHsz2dl = 2Ddsz1 − z2d. s3.7d

Recall thatD is the disorder intensity introduced by Eq.
s2.4d.

In order to solve Eqs.(3.2) and (3.3), it is convenient to
expand the radiation fieldv over the eigenfunctions of the

operatorsL̂1 and L̂2 [Eqs. (3.4) and (3.5)] which are pre-
sented in Appendix A. The eigenfunctions are separated into
localized modes(corresponding to variations of the soliton
parameters) and delocalized ones(corresponding to the ra-

diation). The operatorL̂1 has four localized modes, corre-

sponding to the parametersy, b, a, h, and the operatorL̂2
has two ones, corresponding to the polarization parameters
n0, n2. Projecting Eqs.(3.2) and (3.3) onto the delocalized
eigenfunctions in accordance with the relations(A10) and
(A17), one obtains the explicit equations for the expansion
coefficients of the radiation field:

dy

dz
− 2b = h3,

db

dz
= 0,

da

dz
= 0,

dh

dz
= 0,

dn0

dz
=

dn2

dz
= 0. s3.8d

This is the system of equations valid in the linear approxi-
mation.

The solutions to Eqs.(3.8) with the initial condition(2.6)
area=const,,b=0, h=1, n0,2=0, andy=edz h3. Therefore,
we obtain the average over the disorder realizations

ky2l = Dz, s3.9d

reproducing the soliton jitter reported in Ref.f23g. This ef-
fect can be called “direct jitter” since it is related to the direct
influence of the disorder on the solitons.

B. Radiation

In this section, we investigate the profile of radiation shed
by single soliton propagating along the line. In this case, the
source of radiation is localized at the soliton and the radia-
tion spreads in both directions from the soliton. We neglect
the secondary source connected with the radiation itself,
which is justified by the weakness of the disorder leading to
small amplitude of the radiation. Thus, in the main approxi-
mation, the radiation can be examined in the first order over
the disorder.

Here, we consider the regime where the soliton amplitude
h can vary essentially during its propagation along the fiber.
Then one needs to solve Eq.(2.2) linearized near the soliton
with an arbitrary amplitudeh. The eigenfunctions of the cor-
responding linear operators can be obtained by rescaling the

eigenfunctions of the operators(3.4) and (3.5) presented in
Appendix A. Below we assume thaty=0, i.e., placing the
soliton position at the origin. The position fluctuations de-
scribed by Eq.(3.9) are irrelevant for the problem. The rea-
son is that in the linear approximation the position fluctua-
tions are decoupled from the radiation, and, consequently,
they influence the radiation in the second order over the dis-
order, which is outside our approximation.

We find that the modes corresponding tov1 are not ex-
cited in the first order ofhj. Thus, in this approximation we
only need to consider the fieldv2. This component of radia-
tion field, v2, has the following expansion:

Sv2

v2
* D =E

−`

+` dk

2p
fakwk/hshtd + ak

*wk/hshtdg, s3.10d

where wk,wk are the eigenfunctions defined by Eqs.sA15d
andsA16d andak are complex-valued functions ofz. Project-
ing the generalization of Eq.s3.3d onto the functionswk/h,
wk/h, one finds

dak

dz
− isk2 + h2dak = hbk/hH* , s3.11d

bq = −
pisq + id

2 coshspq/2d
. s3.12d

Solving Eq.s3.11d, we obtain

akszd =E
0

z

dz8 bk/hsz8dhsz8dH*sz8dexpfik2sz− z8d

+ iE
z8

z

dz9h2sz9dg. s3.13d

Considering the radiation far away from the soliton, i.e., in
the regiont@h, we find

v2sz,td =
1

4
E

0

z

dz8 h2sz8dexpf− iE
z8

z

dz9h2sz9dg

3Jfhsz8dt,h2sz8dsz− z8dgHsz8d, s3.14d

where

Jsx,sd =E
−`

+`

dq
1 + iq

coshspq/2d
es−iqx−iq2sd. s3.15d

A stationary phase calculation of the above integral yields

Jsx,sd <Îp

is
S1 − i

x

2s
D expsix2/4sd

coshspx/4sd
, s3.16d

which is valid ats@1.
Equation(3.14) shows thatv2, as a linear combination of

H, possesses Gaussian statistics with zero average. There-
fore, the stochastic properties of the radiation field can be
characterized by its mean square fluctuations. Multiplying
two replicas of Eq.(3.14) and averaging the result over the
disorder in accordance with Eqs.(3.6) and (3.7), we find
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kuv2u2l =
D

8
E

0

z

dz8h4sz8duJfhsz8dt,h2sz8dsz− z8dgu2.

s3.17d

To examine the averages3.17d in more detail, we have to
establish az dependence of the soliton amplitudeh, which is
the subject of the following section.

Note that above we neglected the terms originated from
]zh. In other words, we used the adiabatic approximation for
the radiation. It is justified by the fact that]zh appears in the
second order of the disorder whereas we examine the radia-
tion field in the first order of the disorder.

C. Soliton degradation law

In this section, we derive a degradation law for the single-
soliton propagation. Previously, we found that the amplitude
of the soliton remains unchanged in the linear approximation
of the disorder. Therefore, to find the law, one has to take
into account the second order of the disorder. Since we con-
sider essential variations of the amplitude, we need to use for
the radiation the adiabatic approach developed in the preced-
ing section.

To establish the soliton degradation law, it is convenient
to start from the conservation law

]zuCu2 = i]tsC*]tC − C]tC
*d − ]tsC*m̂Cd, s3.18d

following from Eq. s2.2d. Now the localized nature of the
soliton can be used. We first integrate both sides of Eq.
s3.18d over −tø tøt, wheret@h. Then one finds that the
major contribution to the integrale−t

t dtuCstdu2 comes from
the soliton and hence, becomes 2h. The integral of the right-
hand side of Eq.s3.18d involves the boundary value evalua-
tions. On the boundaries,t=−t ,t, we can keep only the ra-
diation term in the expressions3.1d. Then we obtain

dh

dz
= isv*]tv − v]tv*dut=t. s3.19d

Here, we omitted the contribution related to the last term in
Eq. s3.18d and thet dependence of the factors in Eq.s3.1d
since they are of the third order over the disorderhj.

As it follows from Eq. (3.14), the right-hand side of Eq.
(3.19) is determined by the integrals of the random disorder
hj and, consequently, it is a self-averaging quantity. There-
fore, in the main approximation, the right-hand side of Eq.
(3.19) can be substituted by its average value. Plugging Eq.
(3.14) into Eq. (3.19) and averaging over the disorder, we
find

dh

dz
=

Di

4
E

0

z

dz8 h4sz8dJ*]tJ,

where J=Jfhsz8dt ,h2sz8dsz−z8dg. The functionJ can be
approximated by its asymptotic values3.16d, which yields

dh

dz
= −

pD

4
E

0

z

dz8
th2sz8d
sz− z8d2

z2 + 1

cosh2spz/2d
,

wherez=t / fhsz8dsz−z8dg. Then, calculating the integral over
f0,zg sit can be extended from −̀ to +` because of the
inequality t@hd we obtain the equationdh /dz=−2Dh3/3
leading to the solution

hszd = S1 +
4D

3
zD−1/2

. s3.20d

Thus, the soliton asymptotically decays ash~z−1/2 due to the
PMD disorder, which is in agreement with Ref.f24g. It is
instructive to compare the laws3.20d with one caused by the
chromatic disorder which gives the asymptotic behaviorh
~z−1/4 f26g.

Now we return to Eq.(3.17). Using the expression for the
soliton amplitude(3.20), we can obtain the space and time
dependence of the mean square fluctuation of the radiation.
From the formulas(3.15) and(3.16), one finds the following
expressions in different spatial-temporal domains

Dz! 1,z@ t @ 1: kuv2u2l =
pD

8
lnsz/td,

Dz! 1,t @ z@ 1: kuv2u2l =
Dt

16z
expS−

pt

2z
D ,

Dz@ 1,t2 ! z/D: kuv2u2l =
3p

64z
ln

Dz3

t2
,

Dz@ 1,z@ t @ Îz/D: kuv2u2l =
3p

16z
lnsz/td,

Dz@ 1,t @ z: kuv2u2l =
3t

32z2expS−
pt

2z
D .

The above expressions show that the mean square fluctuation
of the radiation has the logarithmic profile att,z and decays
exponentially att.z.

Let us reproduce here a short qualitative explanation of
this behavior given in Ref.[26]. The radiation emitted by the
soliton can be represented as a series of Fourier harmonics
with the frequenciesk: vk~exps−ilkz+ iktd. The dispersion
law, valid for the propagation of the radiation in the linear
regime, is lk=1+k2, leading to the group velocitydt/dz
=2k. Since the radiation source localized at the soliton ini-
tially has the amplitude 1, Fourier harmonics have approxi-
mately equal amplitudes atk&1, and their amplitudes dimin-
ish fast ask increases in the domaink*1. Therefore there is
a small number of wave packets running more thant,z (this
explains the exponential decay att.z). The logarithmic de-
pendence of the profile in the regiont,z reflects the number
of wave packets reaching a givent at somez.

We obtained the degradation law(3.20) for a single-
soliton propagation. It is clear that the same degradation law
can be observed for a multisoliton pattern provided the soli-
tons are well separated. The reason is that the degradation
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law reflects the energy losses of soliton due to the imperfec-
tions of the fiber. This is evidently a “single-particle” pro-
cess. Notice that the soliton amplitude remains practically
unchanged in the regionDz!1. Hereafter, our analysis is
focused on this domain, keeping a direct relation to the in-
formation transmission in real optical lines.

D. Forces and impulses

This section is devoted to the role of radiation in soliton
propagation. Assuming thatDz!1, we examine the evolu-
tion of soliton parameters under the action of the radiation.
For this purpose, we need an accuracy up toOshj

2d. Again,
we suppose that initially the soliton has linear polarization
and that the first axis of the reference system is directed
along the polarization.

Equation(3.8) shows that the equation for the soliton po-
sition y is coupled to the equation for the phase velocityb
already in the first order overhj, v. Thus, we need to find the
second-order corrections overhj, v to the equations fory and
b. It also follows from Eq.(3.8) that corrections toh, a, and
n0,2 can appear only in the second order overhj. Such cor-
rections produce contributionsOshj

3d to the equations fory
andb, which are negligible in our approximation. Therefore,
we can ignore these corrections, substitutingh=1, n0,2=0,
and lettinga be some constant in the expression(3.1).

Expanding Eq.(2.2) up to the second order overhj, v and
projecting the result onto the corresponding eigenfunctions
of the operator(3.4) (see Appendix A), we obtain

db

dz
= F = Fvv + Fvv + Fvh, s3.21d

dy

dz
= h3 + P, P = 2b + Pvv + Pvh, s3.22d

where both the first- and the second-order terms are kept.
One can say thatF is the force acting on the soliton and that
h3+Pvv+Pvh is an extra impulse. The explicit expressions
for the contributions to the force and to the impulse are

Fvv = 2E dt
tanhx

cosh2x
uv2u2, s3.23d

Fvh = − ImSH* E dt
tanhx

coshx
]tv2D , s3.24d

Fvv =E dt
tanhx

cosh2 x
f4uv1u2 + v1

2 + sv1
*d2g, s3.25d

Pvv = i E dt
x

cosh2 x
fv1

2 − sv1
*d2g, s3.26d

Pvh = − ReSH* E dt
x

coshx
]tv2D , s3.27d

wherex= t−y. Since the integrals are determined by a narrow
vicinity of the soliton, the integration overt can be extended
from −` to +`.

If we substitute the formula(3.14) (with h=1) into the
above expressions, then we obtain zero values of the contri-
butions to the force and impulse(excluding the first-order
termh3). This is a manifestation of the absence of the soliton
self-action. For a multisoliton pattern, however, the contribu-
tions to the force and to the impulse are nonzero, depending
on the characteristics of the soliton pattern. Thus, the radia-
tion becomes a mediator of the intersoliton interaction. In the
following section, we examine in detail the interaction of
solitons and radiation at the onset of two-soliton pattern.

IV. TWO SOLITONS

In this section, we consider two-soliton dynamics. From
Eq. (3.20), one finds that solitons start to degrade in the
region z,1/D. Here, we focus on the domainz!1/D
where the degradation effect is negligible and hence, the am-
plitudes of the solitons can be treated as unchanged. We are
mainly interested in the fluctuations of the separation be-
tween the solitons which can be a potential source of the
information losses.

We consider the solitons 1 and 2 positioned aty1 and
y2 sy2.y1d with the separationy=y2−y1 which is assumed
to be much larger than unity. Then, one can neglect the direct
interaction between the solitons(which is exponentially
small) and take into account only the interaction mediated by
the radiation. In the two-soliton dynamics, the contribution
Ccon in Eq. (2.5), related to the radiation, is a superposition
of two terms, corresponding to the radiation emitted by each
soliton. In this case the impulses and the forces applied to the
solitons are nonzero. Below, we examine the soliton position
shifts induced by the radiation and their dependence on the
phase mismatch and polarization of the solitons(which are
assumed to be linearly polarized). The phase mismatcha
=a2−a1 (where a1 and a2 are phases of the solitons) is
arbitrary and we consider two cases: parallel and orthogonal
polarizations.

A. Solitons with parallel polarizations

We first consider the case when both solitons are initially
polarized identically. Then, the expression(2.5) can be re-
written as

SC1

C2
D = expsiz + ia1dHFexpsib1x1d

coshsx1d
+

expsib2x2 + iad
coshsx2d GS1

0
D

+ Sv1

v2
DJ , s4.1d

in spirit of Eq. s3.1d. Here and hereafter,x1= t−y1 and x2
= t−y2. In accordance with aforesaid, we set the amplitudes
h1=h2=1 and neglected the degrees of freedom responsible
for the fluctuations of polarizations. The phase mismatcha
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can be treated as a parameter which does not undergo
changes along the fiber.

In order to obtain the forces and impulses in accordance
with Eqs.(3.21)–(3.27), one needs to find the radiation field
v, which can be examined in the linear approximation. Sub-
stituting the expression(4.1) into Eq. (2.2) and linearizing
the equation inv andhj (and neglectingb1, b2), we find

]zSv2

v2
* D − iL̂2Sv2

v2
* D = S H

H* D tanhsx1d
coshsx1d

+ S Heia

H*e−ia D tanhsx2d
coshsx2d

,

s4.2d

where the operatorL̂2 is a generalization of the operatorL̂2,

defined by Eq.s3.5d. Near the first soliton,L̂2 coincides with

L̂2, and near the second soliton,L̂2 differs from L̂2 by some
phase factors. Similar to the single-soliton case, the compo-
nent v1 is not excited in this approximation and hence, we
can neglect this component of the radiation field.

Again, we solve Eq.(4.2) by expanding the fieldv2 over

the eigenfunctions of the operatorL̂2, corresponding to the

delocalized solutions. The eigenfunctionswi of L̂2 can be
written as

t , sy1 + y2d/2, wki = wksx1d, wki = wksx1d,

t . sy1 + y2d/2, wki =
k + i

k − i
eikywksx2d,

wki =
k − i

k + i
e−ikywksx2d, s4.3d

where the functionswk and wk are introduced in Sec. II of
Appendix A. In the region between the solitons, the expres-
sions(4.3) match well. Expandingv2 by the continuous spec-
trum only, we find

Sv2

v2
* D =E

−`

+` dk

2p
sakiwki + aki

* wkid, s4.4d

whereaki are complex-valued functions ofz.
Then, projecting Eq.(4.2) to the eigenfunctions(4.3), we

obtain

d

dz
aki − isk2 + 1daki = bkH

*szdF1 +
k − i

k + i
e−iky−iaG ,

wherebk are defined in Eq.s3.12d. The solution of the above
equation is

akiszd = bkE
0

z

dz8 expfisk2 + 1dsz− z8dg

3F1 +
k − i

k + i
e−iky−iaGH*sz8d, s4.5d

similar to Eq.s3.13d.
Substituting the formulas (4.3)–(4.5) into Eqs.

(3.23)–(3.27), we obtain explicit expressions for the forces
and impulses in terms ofhj. Then we can analyze statistical

properties of the forces and impulses starting from Eq.(2.4)
(the details of the analysis are presented in Appendix B). The
average value ofF is exponentially small(proportional to
the factore−y, wherey is the intersoliton separation) and can
be neglected. The average value ofP is D /4 [see Eq.(B11)]
which gives a systematic driftDy1,2=sD /4dz of the soliton
positions. As we will show below, it is a subleading contri-
bution to the variation of the separation,dy. Thus, we focus
on the pair correlation functions of the quantities.

For the impulse of the first soliton, we find

kP1sz1dP1sz2dl = 4GiD2minsz1,z2d, s4.6d

where the average value ofP1 is neglected.Gi in Eq. s4.6d is
a numerical constant:Gi <0.204. Now let usturn to the
fluctuation of the impulse differences between the soli-
tons. We findfsee Eq.sB15dg

kfP2sz1d − P1sz1dg fP2sz2d − P1sz2dgl

=8f1 + coss2adgGiD2 minsz1,z2d, s4.7d

where the subscripts 1 and 2 correspond to the first and the
second solitons.

Now we establish the statistics of the fluctuationsdy1,
dy2, anddy of the soliton positionsy1,y2 and the separation
y=y2−y1, respectively. As it follows from Eq.(4.7), the
second-order moments are

ksdy1,2d2l = 4
3GiD2z3 + Dz, s4.8d

ksdyd2l = 8
3f1 + coss2adgGiD2z3. s4.9d

Note that the termDz in ksdy1,2d2l is induced by the first-
order contribution to the impulse,h3, in the right-hand side
of Eq. s3.22d. This term corresponds to the expressions3.9d.
Equationss4.8d ands4.9d show that the relative position shift
is sensitive to the phase mismatcha. The systematic drift
Dy1,2=sD /4dz of the soliton positions is negligible in com-
parison to the typical fluctuation of the separationdy
,Dz3/2 at z@1, which justifies neglecting the drift. Hence,
the typical displacement caused by the pair soliton interac-
tion is proportional toz3/2 which is similar to the Elgin-
Gordon-Haus jitterf27,28g.

We remark that the high-order irreducible correlation
functions of the forceF and the impulseP only produce
small corrections to the moments ofdy1,2 and dy provided
z@1, Dz!1. Therefore, the fluctuations of soliton positions
possess Gaussian statistics, which can be completely charac-
terized by Eqs.(4.8) and (4.9).

B. Solitons with orthogonal polarizations

We now turn to the case when solitons have orthogonal
polarizations. In this case, the expression(4.1) has to be
replaced by

RADIATION-INDUCED INTERACTION OF OPTICAL… PHYSICAL REVIEW E 69, 046612(2004)

046612-7



SC1

C2
D = expsiz + ia1dHexpsib1x1d

coshsx1d
S1

0
D

+
expsib2x2 + iad

coshsx2d
S0

1
D + Sv1

v2
DJ , s4.10d

again in spirit of Eq.s3.1d. Following a procedure similar to
one developed in the preceding section, we find

i]zSv1

v1
* D + L̂ISv1

v1
* D = ih3f1sx1d + iĤ*Q̂−1f1sx2d ,

s4.11d

i]zSv2

v2
* D + L̂IISv2

v2
* D = iĤ f1sx1d − ih3Q̂−1f1sx2d ,

s4.12d

where

Ĥ = SH 0

0 H* D, Q̂ = Seia 0

0 e−ia D .

Here, f1 is defined in Appendix A and the operatorsL̂I and

L̂II are linearized parts of Eqs.s2.2d, analogous to the

operatorsL̂1,2 fEqs. s3.4d and s3.5dg. Note that in the case
of orthogonal polarization, both components of the radia-
tion field, v1 and v2, are relevant.

Equations(4.11) and(4.12) can be solved after expanding
the fieldsv1 andv2 over the eigenfunctions of the operators

L̂I and L̂II , respectively:

Sv1

v1
* D =E

−`

+` dk

2p
sak'fk' + ak'

* fk'd, s4.13d

Sv2

v2
* D =E

−`

+` dk

2p
sck'wk' + ck'

* wk'd, s4.14d

whereak' ,ck' are complex-valued functions ofz. Here, the
eigenfunctions are

t , sy1 + y2d/2, fk' = fksx1d, fk' = fksx1d,

t . sy1 + y2d/2, fk' =
k + i

k − i
eikywksx2d, s4.15d

fk' =
k − i

k + i
e−ikywksx2d,

t , sy1 + y2d/2, wk' = wksx1d, wk' = wksx1d,

t . sy1 + y2d/2, wk' =
sk + id2

sk − id2eiky+iaQ̂fksx2d,

wk' =
sk − id2

sk + id2e−iky−iaQ̂fksx2d, s4.16d

where fk,wk, fk,wk are defined in Appendix A. Again, the
expressions smoothly match in the region between the soli-
tons. Using the expressions(4.13) and (4.14), we find

d

dz
ak' − isk2 + 1dak' = bkHszd

k − i

k + i
e−iky−ia,

d

dz
ck' − isk2 + 1dck' = bkH

*szd, s4.17d

andbk is defined in Eq.(3.12). The solutions of Eqs.(4.17)
are

ak' = bkE
0

z

dz8Hsz8d
k − i

k + i
e−iky−iaeisk2+1dsz−z8d, s4.18d

ck' = bkE
0

z

dz8H*sz8deisk2+1dsz−z8d. s4.19d

In the case of orthogonal polarizations, some terms in
Eqs.(3.21) and(3.22) are found to be zero, see Appendix C.
An analysis made in this appendix shows that the main effect
related to the second-order terms is produced by the average
kP1l,D, leading to the systematic driftDy1,2<0.6Dz. This
drift is negligible compared to the fluctuations of the posi-
tions. Therefore the term withb1 can be neglected in Eq.
(3.22) for y1. The termPvv can be also neglected in compari-
son withh3 (see Appendix C). As a result, we return to the
first-order equation]zy1=h3, and similarly,]zy2=−h3. Hence,
we obtain

ksdy1,2d2l = Dz, s4.20d

ksdyd2l = 4Dz. s4.21d

Notice that the results4.20d coincides with Eq.s3.9d. In con-
trast to the parallel polarization case, there is noa depen-
dence in the second-order moments. We also note that the
terms proportional toz3 are absent. For more details of the
calculation concerning the forces and impulses, we refer the
reader to Appendix C.

Again, one can check that the high-order irreducible cor-
relation functions of the impulseP [see Eq.(C12)] produce
small corrections to the moments ofdy1,2 and dy provided
z@1, Dz!1. Thus, the fluctuations of soliton positions pos-
sess Gaussian statistics and can be completely characterized
by Eqs.(4.20) and (4.21).

C. Arbitrary polarizations

The forces and impulses in Eqs.(3.21) and(3.22) consist
of the first-order(only h3 term) and the second-order terms
of the disorderhj. The first-order term leads to the “direct
jitter” [23] of the solitons, determined by Eq.(3.9). This
“direct jitter” is a single-soliton effect and is insensitive to
the soliton pattern. On the contrary, the second-order contri-
bution is responsible for the intersoliton interaction mediated
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by the radiation, and it is sensitive to the soliton pattern.
So far, we have considered two special polarizations in

the two-soliton evolution: parallel and orthogonal polariza-
tions. In both cases, the jitter of the intersoliton separation
occurs, and the fluctuationdy possesses Gaussian statistics.
However, the mean squareksdyd2l has, in accordance with
Eqs.(4.9) and(4.21), essentially differentz dependence. For
the parallel polarizationsdy,Dz3/2, whereas for the or-
thogonal polarization,dy,sDzd1/2. An explanation is that the
direct jitter is canceled in the parallel polarizations whereas
the intersoliton interaction is negligible in comparison with
the direct jitter in the orthogonal polarization.

In the general case, when the angle between the soliton
polarizations does not coincide with 0 orp /2, or when el-
liptic polarizations are considered,dy still possesses Gauss-
ian statistics(at largez). However, both the first- and the
second-order terms appear in the forces and impulses. As a
result, there are two different contributions,,Dz and,D2z3,
to ksdyd2l, related to the direct jitter and to the soliton inter-
action, respectively. Therefore, a new scaleD−1/2 has to be
introduced. Ifz&D−1/2 then the first-order term(direct jitter)
becomes dominant anddy,sDzd1/2. If z*D−1/2 then the
second-order terms(interaction) prevail anddy,Dz3/2. Un-
fortunately, it is a difficult task to find coefficients in the
general case. Nevertheless, the estimates fix thez depen-
dence of the typical fluctuation of the intersoliton separation
and determine its value for arbitrary polarizations.

V. NUMERICAL SIMULATIONS

In this section, we discuss the results of the direct numeri-
cal simulations based on Eq.(2.2) which have been per-
formed for the one- and two-soliton patterns. The initial con-
ditions are the perfect solitons determined by Eq.(2.6) (with
the linear polarization), and the statistics of the disorder is
determined by Eqs.(2.3) and(2.4). Recall that Eqs.(2.2) and
(2.6) are written in terms of the dimensionless units when the
Kerr nonlinearity, chromatic dispersion, and soliton width
are rescaled to unities.

Since we aim to observe the soliton behavior in the long
haul transmission, the major obstacles in the computation
result from the long time integration. As we have observed,
the perturbed solitons shed radiation and the radiation moves
away from the solitons. In the computational domain, which
is finite, the radiation interacts eventually with the artificial
boundaries(experiencing a reflection), and this causes spuri-
ous numerical results. In order to overcome these undesirable
numerical artifacts we implement the so-called transparent
boundary conditions. We refer the reader to Ref.[26] for
more details about these boundary conditions.

Utilizing the Runge-Kutta method supplemented by the
transparent boundary conditions, we first investigate the
single-soliton case and then the interaction of two solitons in
two different polarization cases. Specifically, we examine the
degradation law in the single-soliton case and the statistics of
the intersoliton interaction. The results are presented in Figs.
1–3. Figure 1 is for the single-soliton case, and Figs. 2 and 3
correspond to the two-soliton case.

Figure 1 shows a dependence of the soliton amplitude on
the propagation lengthz for a realization of the disorderhj,
generated in accordance with Eqs.(2.3) and (2.4) whereD
=0.0225 was chosen. This choice is made to have a possibil-
ity to compare the numerical results with the theoretical pre-
dictions in a wide range of the soliton amplitude. The solid
and dashed curves represent the computational result for a
representative realization of the disorder and the analytical
prediction from Eq.(3.20), respectively.

Now we turn to the two-soliton case. In Fig. 2, we plot the
mean square soliton separation fluctuationksdyd2l as a func-
tion of the propagation lengthz in the case of the parallel
polarization. Here, we take the noise intensityD=0.01252

FIG. 1. Soliton amplitude as a function of the position along the
fiber. The solid curve gives the numerical result for a realization of
the disorder. The dashed curve represents the theoretical prediction.

FIG. 2. Parallel polarization case: mean square of the intersoli-
ton separationksdyd2l as a function of the position along the fiber.
The phase mismatches area=0, p /4, andp /2. The dashed curves
correspond to the theoretical prediction(4.9) and the solid ones are
obtained as a result of averaging over 40 realizations of the
disorder.
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which is much smaller than in the single-soliton case. This is
because we need to observe the intersoliton dynamics in the
region where the soliton does not lose its energy signifi-
cantly. The initial distance between the solitons,y0, needs to
be large enough to avoid the direct interaction between soli-
tons. In this simulation, we takey0=20. Each soliton position
is measured as reported in Ref.[26]. For the sake of com-
parison, three different phase mismatchesa=0,p /4 ,p /2 are
examined. For eacha, we average the fluctuationssdyd2 over
40 realizations of the disorder. The solid curves in Fig. 2
represent the numerical results forksdyd2l and the dashed
curves stand for the theoretical predictions(4.9).

In Fig. 3, we plot the mean square soliton separation fluc-
tuation ksdyd2l as a function of the propagation lengthz in
the case of the orthogonal polarization. We take the same
noise intensityD=0.01252 and the same initial separation
y0=20 as for the parallel polarizations. Each soliton position
is measured as reported in Ref.[26]. The solid curve in Fig.
3 represents the numerical result forksdyd2l (averaged over
40 realizations of the disorder) and the dashed line stands for
the theoretical prediction(4.21).

All the figures demonstrate a reasonable agreement be-
tween the theory and the numerics. Thus, our theoretical pre-
dictions are confirmed by the results obtained from the direct
numerical simulation of Eq.(2.2) with the initial conditions
for the single- and two-soliton cases.

VI. CONCLUSION

Let us summarize our major results concerning the role of
radiation (continuous spectrum) in the soliton (nonlinear)
mode of the optical signal propagation through a fiber with
randomly varying birefringence(leading to the PMD effect).

The major effect reported in this paper is an emergence of
the interaction between solitons, mediated by the radiation

shed by the solitons due to the disorder. This gives rise to
random displacements of the solitons, which are Gaussian
random variables with zero average. The jitter is independent
of the soliton separation, which is due to one-dimensional
nature of the fiber. The negligible systematic drift is ex-
plained by the reflectiveless character of the radiation scat-
tering on solitons in the integrable Manakov equation. This
effect is in contrast to the nonintegrable case investigated in
Ref. [31]. The results we presented in this paper are similar
to ones obtained in the paper[26] for the chromatic disper-
sion disorder, although the theoretical analysis for the PMD
disorder is more complex.

We demonstrated that due to the PMD disorder, soliton
loses its energy to radiation during propagation. The ampli-
tude decays by the order of its initial value, at the distance
z,1/D (in our dimensionless units when the Kerr nonlin-
earity, chromatic dispersion, and soliton width are rescaled to
unities) whereD is the strength of the disorder fluctuations
(which is assumed to be weak:D!1). Note that in the re-
gion of strong degradation, the PMD disorder leads to faster
degradation of the soliton than the chromatic dispersion dis-
order examined in Ref.[26] (the asymptotic laws for the
soliton amplitude are~z−1/2 and ~z−1/4, respectively). We
also established the profile of radiation emitted by the soli-
ton. The soliton degradation is negligible(it is a necessary
condition for the successful information transmission) at
Dz!1. Nevertheless, even for smallDz, the soliton interac-
tion caused by radiation can be an essential source of the
information losses.

In addition to the soliton interaction there is a phenom-
enon called direct jitter of the solitons[23] which is a single-
soliton effect, described by Eq.(3.9). If all the solitons have
the same polarization then the direct jitter causes identical
displacements of the solitons. Then an influence of the jitter
on the detection of the information can be removed by a
simple compensation scheme known as “setting the clock.”
For different polarizations, however, the direct jitter can lead
to significant information losses.

We examined in detail the evolution of two solitons
propagating in the same frequency channel. The soliton in-
teraction appears to be suppressed for the orthogonal polar-
izations when the direct jitter dominates. For the parallel
polarizations, the direct jitter does not influence the soliton
separation and its fluctuationsdy are determined by the soli-
ton interaction, givingdy,Dz3/2. Note a remarkable phase
dependence of the soliton interaction[see Eq.(4.9)], having
a deep minimum at the phase mismatcha=p /2. Generally,
for arbitrary polarizations, both the direct jitter and the soli-
ton interaction contribute to the fluctuations of the soliton
separation, prevailing at differentz. At z&D−1/2 the direct
jitter dominates, whereas atz*D−1/2 the intersoliton interac-
tion is the major effect.

We performed extensive direct numerical simulations for
the single- and two-soliton patterns, which confirm our the-
oretical predictions. The results of the simulations and their
comparison with the theory are presented in Figs. 1–3, which
demonstrate reasonable agreements between the numerics
and the theory.

Considering multisoliton case, we can treat radiation(de-
localized modes) as a superposition of contributions related

FIG. 3. Orthogonal polarization case: mean square of the inter-
soliton separationksdyd2l as a function of the position along the
fiber. The dashed curve corresponds to the theoretical prediction
and the solid one is obtained as a result of averaging over 40 real-
izations of the disorder.
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to each soliton. The reflectiveless character of the radiation
scattering on solitons, noted above, essentially simplifies the
analysis, since the radiation emitted by a soliton monotoni-
cally spreads in both directions. This enables one to estimate
“forces,” caused by the radiation, in the multisoliton pattern
via the forces obtained from the two-soliton case. The dis-
persion of the displacements induced by the intersoliton in-
teraction increases as the number of solitonsN grows in the
fiber. In this case, the dispersion is proportional toN1/2,
whereN is the number of the solitons involved in the inter-
action. Since the numberN is proportional toz (at a given
average density of solitons in the pattern) we reach the pro-
portionality lawdy~z2.

Now we discuss our results in connection with the soliton
mode of the information transmission. We established that
the intersoliton interaction becomes the most dangerous
source of the information losses overcoming the direct jitter.
Because of the dependencedy~z2 the soliton interaction can
be more essential than the Elgin-Gordon-Haus effect[27,28].
We established that in the two-soliton case the interaction is
suppressed for the orthogonal polarizations and for the phase
mismatcha=p /2 in the case of parallel polarization. One
can take advantage of these properties to reduce the soliton
displacements and consequently, to minimize the information
loss. In the real information transmission systems, however,
long sequences of solitons are used as information carriers.
In this case, not all soliton pairs can achieve the mutual
orthogonal polarization or the phase mismatcha=p /2.
Therefore, the random jitter caused by the soliton interaction
due to the PMD disorder can be the most essential error
source in the high-rate information transmission systems.
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APPENDIX A: KAUP PERTURBATION TECHNIQUE
Here we present some technical details necessary for a

consistent derivation of the results formulated in the main
body of the paper.

1. Eigenfunctions of operatorL̂1

Let us recall some of the well-known properties in the
perturbation near a single-soliton solution described by the
nonlinear Schrödinger equation[30]

− i]zC = ]t
2C + 2uCu2C. sA1d

We expandC near the single-soliton solutionCsol=expsia
+ izdcosh−1std. Then, one can writeC as

C = fcosh−1std + vgexpfiz + iag.

Using the above expression and Eq.sA1d, we find

i]zS v

v* D + L̂1S v

v* D = 0. sA2d

Here the operatorL̂1 is

L̂1 = s]t
2 − 1dŝ3 +

2

cosh2std
s2ŝ3 + iŝ2d. sA3d

Evidently,

L̂1
* = L̂1, ŝ1L̂1ŝ1 = − L̂1, L̂1

T = ŝ3L̂1ŝ3. sA4d

The spectrum of the linear operator is determined by the

equationL̂1f =lf. A general solution of this equation reads

fk = expfiktgH1 −
2ik exps− td

sk + id2coshstdJS0

1
D

+
expsiktd

sk + id2cosh2std
S1

1
D, lk = k2 + 1, sA5d

wherek runs from −̀ to +`. Due to the propertysA4d, the

functions fk=ŝ1fk
* are also eigenfunctions ofL̂1:

fk = expf− iktgH1 +
2ik exps− td

sk − id2 coshstdJS1

0
D

+
exps− iktd

sk − id2 cosh2std
S1

1
D, lk = − sk2 + 1d. sA6d

There are also bound states corresponding to marginally
stable modes:

f0 =
1

coshstd
S 1

− 1
D, l0 = 0,

f1 = S1

1
D tanhstd

coshstd
, l1 = 0. sA7d

Double poles atk= ± i mean that two more functions must be
added for closure, namely,

f2 =
t

coshstd
S 1

− 1
D, L̂1f2 = − 2f1, sA8d

f3 =
t tanhstd − 1

coshstd
S1

1
D, L̂1f3 = − 2f0. sA9d

Note that due to the propertysA4d, the left eigenfunctions of

the operatorL̂1 can be written asfk
+ŝ3, fk

+ŝ3. This leads to a
set of orthogonality conditions for the eigenfunctions. In an
explicit form, the conditions can be written as

E
−`

+`

dt fk
+ŝ3fq = 2pdsk − qd, E

−`

+`

dt fk
+ŝ3fq = − 2pdsk − qd,

sA10d

E
−`

+`

dt f2
+ŝ3f1 = 2, E

−`

+`

dt f0
+ŝ3f3 = − 2. sA11d
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2. Eigenfunctions of operatorL̂2

We now present eigenfunctions of the operator(3.5). The
set contains functions of the continuous spectrumwk,wk, sat-
isfying

L̂2wk = sk2 + 1dwk, L̂2wk = − sk2 + 1dwk. sA12d

Evidently,

L̂2
* = L̂2, ŝ1L̂2ŝ1 = − L̂2, L̂2

+ = ŝ3L̂2ŝ3. sA13d

Therefore,
wk = ŝ1wk

* , w−k = ŝ1w−k
* . sA14d

There are also localized eigenfunctions which are zero

modes ofL̂2, satisfyingL̂2w0,2=0.
The eigenfunctions corresponding to the continuous spec-

trum are

wk = S0

1
DC̃k, wk = S1

0
DC̃−k, sA15d

C̃k=
k + i tanh t

k + i
eikt. sA16d

We obtain the following orthogonality conditions:

E
−`

+`

dt wk
+ŝ3wq = 2pdsk − qd,

E
−`

+`

dt wk
+ŝ3wq = − 2pdsk − qd, sA17d

analogous to Eq.(A10). The zero modes of the operator(3.3)
can be written as

w0std = S1

1
D cosh−1t, w2std = S 1

− 1
D cosh−1t. sA18d

They are normalized according to

E
−`

+`

dt w0
Tŝ3w2 = 4. sA19d

APPENDIX B: FORCE AND IMPULSE FOR PARALLEL
POLARIZATION

Using Eq.(4.4) and takingwk neary1 from Eq. (4.3), one
can derive

Fvvszd = 2E dq dk

s2pd2akiaqi
* E dx

tanhx

cosh2 x

3
sk + i tanhxdsq − i tanhxd

sk + idsq − id
eikx−iqx, sB1d

Fvhszd = − ImHHszd E dk

2p
aki

* E dx
sinh2 x − 1

cosh3 x

3
k − i tanhx

k − i
e−ikxJ . sB2d

Integrating overx and plugging Eq.s4.5d into the above
equations, we find

Fvvszd =
ip

26 E dq dk sk2 − q2d2

sinhfpsk − qd/2gcoshfpk/2gcoshfpq/2g

3Fk − i

k + i
e−ia−iky +

q + i

q − i
eia+iqy +

k − i

k + i

q + i

q − i
eisq−kdyG

3E
0

z

dz1 dz2 H*sz1dHsz2deisk2+1dsz−z1de−isq2+1dsz−z2d,

sB3d

Fvh =
p

8
ReHE dk

ksk2 + 1d
cosh2spk/2dFk + i

k − i
eiky+iaGH*szd

3E
0

z

dz1Hsz1de−isk2+1dsz−z1dJ . sB4d

For the sake of convenience, we rewrite the forceFvv as
]zP−s1/3dL, where

P =
p

26 E dq dksk2 − q2d
sinhfpsk − qd/2gcoshfpk/2gcoshfpq/2g

3Fk − i

k + i
e−ia−iky +

q + i

q − i
eia+iqy +

k − i

k + i

q + i

q − i
eisq−kdyG

3E
0

z

dz1dz2 H*sz1dHsz2deisk2+1dsz−z1d−isq2+1dsz−z2d,

sB5d

and, with an exponential accuracy,

To obtain Eq.sB6d, one has to take the integral overk andq
omitting exponentially small terms. As it follows from Eqs.
s3.24d ands3.27d, the structure ofPvh is similar to one of the
forces,Fvh. Integrating overx, we find

Pvh =
− p2

16
ImHE dk

sk2 + 1dtanhspk/2d
cosh2spk/2d Fk + i

k − i
eiky+iaG

3H*szdE
0

z

dz1Hsz1de−isk2+1dsz−z1dJ . sB7d

Thus, one can rewrite Eqs.s3.21d and s3.22d as

F = Fvh + Fvv = ]zP + L,

]zy = h3 + P, P = 2P + 2E
0

z

dz8Lsz8d + Pvh. sB8d

1. Average force and impulse

Let us find the average of the force,kFl, over the disorder.
Using Eq.(B3) we obtain
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kFvvl =
iD

25 E dq dksk2 − q2d2

sinhfpsk − qd/2gcoshfpk/2gcoshfpq/2g

3Fk − i

k + i
e−ia−iky +

q + i

q − i
eia+iqy +

k − i

k + i

q + i

q − i
eisq−kdyG

3
ips1 − eisk2−q2dzd

k2 − q2 . sB9d

We take an integration contour surrounding poles, which are
not on the real axis. Then, we find thatFvv is exponentially
small. Similarly, the average of the forceFvh is also negli-
gible, and hence, the average of overall forceF in this ap-
proximation is zero.

Now let us calculate the average of the impulseP. Notice
that, due to Eqs.(B4) and (B7), the averages of bothL and
Pvh are negligible,~exps−const3yd at any z. Introducing
new variablesp±=k±q, one obtains

kPszdl =
pD

26 E dp+ dp−

coshfpk/2gcoshfpq/2g

3Fk − i

k + i
e−ia−iysp++p−d/2 +

q + i

q − i
eia+iysp+−p−d/2

+
k − i

k + i

q + i

q − i
e−ip−yG is1 − eip+p−zd

sinhfpp−/2g
. sB10d

The main contribution to the above integral is originated at
small values ofp−. Sincea-dependent terms are exponen-
tially small in y, we find that at largez, z@y, the average
value of the total impulse is

kPszdl=
pD

24 E dp

cosh2spp/4d
=

D

4
. sB11d

2. Impulse fluctuations

Now we calculate the impulse fluctuationkkP2ll=kP2l
−kPlkPl. First let us obtain the main contribution, coming
from L term in Eq.(B8). Using the relation(B4) and taking
Fvh from Eq. (B6), we find

kkLsz1dLsz2dll =
p2

64KKReFHsz1d E dk
ksk2 + 1d

cosh2spk/2d

3
k + i

k − i
eiky+iaE

0

z1

dz18Hsz18de
−isk2+1dsz1−z18dG

3ReFH*sz2d E dq
qsq2 + 1d

cosh2spk/2d
q − i

q + i
e−iqy−ia

3E
0

z2

dz28H
*sz28de

isq2+1dsz2−z28dGLL . sB12d

The terms proportional tokHHlkH*H*l vanish due to the
relation s3.7d. The remaining term is

p2

64
dsz1 − z2dD2ReFE dp+dp−

kqsk2 + 1dsq2 + 1d
cosh2spk/2dcosh2spq/2d

3
k + i

k − i

q − i

q + i
s− ideip−y1 − e−ip−p+z

p+p−
G , sB13d

wheresp±=k±qd. The major contribution is formed at small
p−, p−,1/y, and we find

kkLsz1dLsz2dll =
p3

32
dsz1 − z2dD2E

0

`

dp
psp2 + 1d2

cosh4spp/2d

=0.204D2dsz1 − z2d. sB14d

The fluctuation of the differences between forces acting on
two solitons has an additional factor 2f1+coss2adg, and we
find

4KKE
0

z1

dz18fL
s2dsz18d − Ls1dsz18dg

3E
0

z2

dz28fL
s2dsz28d − Ls1dsz28dgLL

= 8Gif1 + coss2adgD2z, sB15d

where the superscripts 1 and 2 denote the first and the second
solitons, respectively, andz=minsz1,z2d. Here Gi is a nu-
merical factor,Gi=0.204.

Now we evaluate additional contribution to the fluctua-
tions of the impulse and position. First we examine the im-
pulseP. Using Eq.(B5), we find

kkPsz1dPsz2dll = −
p2D2

212 E dk+dk−dq+dq−sk1
2 − q1

2dsk2
2 − q2

2deisq2
2−k2

2dz

sinh
psk1 − q1d

2
sinh

psk2 − q2d
2

cosh
pk1

2
cosh

pk2

2
cosh

pq1

2
cosh

pq2

2

3Fk1 + i

k1 − i
eia+iq1y +

q1 − i

q1 + i
e−ia−ik1y +

k1 + i

k1 − i

q1 − i

q1 + i
GFk2 + i

k2 − i
eia+iq2y +

q2 − i

q2 + i
e−ia−ik2y +

k2 + i

k2 − i

q2 − i

q2 + i
G

3eik−y+iq−ys1 − e−ik+k−zds1 − e−iq+q−zd
k+k−q+q−

, sB16d

wherek±=k1±q2, q±=k2±q1, z=minsz1,z2d, andz= uz1−z2u. Again, the terms proportional tokHHlkH*H*l vanish.
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We now letz=0 and calculate the simultaneous correlation and considera-independent contributions to the fluctuation. One
of the contributions comes froma-independent terms in the square brackets of Eq.(B16). The main contribution to the above
integral is formed atk−,q−,1/y, and hence, one obtains

kkP2ll1 =
p4D2

214 E
y/z

` dk+dq+sk+
2 − q+

2d2

cosh2fpk+/4gcosh2fpq+/4g
1

k+q+sinh2fpsk+ − q+d/4g
. sB17d

The other contribution comes froma-dependent terms in the square brackets of Eq.sB16d. This consists of two equal parts,
which are different from the previous contribution by the absence of one out of two oscillating factors inq− sor k−d. Integrating
over k−, we find

kkP2ll2

=
p4D2

29 E
y/z

` dk+

k+cosh2spk+/4dE dq+dq−

2piq+q−

3f1 − exps− iq+q−zdg

3
fsk+/2d2 − q1

2gfsk+/2d2 − k2
2g

cosh
pk2

2
cosh

pq1

2
sinh

psk+ − 2q1d
4

sinh
psk+ − 2k2d

4

.

sB18d

The major contribution to the integral is formed atk+,1 and
small values ofq±. Now let us find thea-dependent contri-
bution to the fluctuation. The main part originates from the
product ofa-dependent and -independent terms in the right-
hand side of Eq.sB16d. It is proportional to cosa multiplied
by the right-hand side of Eq.sB18d with an extra factor
fsk2+ id / sk2− idgexpfiysq++q−d /2g in the integral. Hence,
the integration is formed overq±, from q,1 up to q
,1/y. We find that additionala-dependent contributions
are ,1/y. Extracting the main contributions which are
proportional to lnsz/yd in Eq. sB17d, lnszd in Eq. sB18d,
and lnsz/y2d in the a-dependent terms, one finds

kkP2szdll =
p4D2

211 fln z+ lnsz/yd + cossadlnsz/y2dg

3E
0

` dk k3

cosh2spk/2d
= 0.14D2Fln

z2

y
+ cossadln

z

y2G .

sB19d

It is much smaller than Eq.sB14d at largez.
To obtain the correlation atzÞ0, z!z, one should take

into account that the integral(B16) is formed in the region
where one of the variablesk±, q± is Os1d while the others are
much smaller than unity. Taking this into account, one de-
rives

kkPsz1dPsz2dll = 0.14D2Fln
z2

y
+ cosa ln

z

y2G
3E

0

` dk k3

cosh2spk/2d
cossk2zd. sB20d

The correlation vanishes algebraically as 1/z and
edzkkPszdPsz+zdll~1/y, which is negligible. Atz,z one
finds that the correlation is~1/z2. This allows us to neglect
the contribution from the impulseP to the position fluctua-
tions.

We now turn to the cross correlation. Integrating overz
and using Eq.(3.7), we derive

kkPsz+ zdLszdll = −
p2D2

210 Re5E dk1dk2dq
qsq2 + 1d

cosh2
pq

2

sk1
2 − k2

2deisk1
2−k2

2dz

sinhfpsk1 − k2d/2gcoshspk1/2dcoshspk2/2d

3
k1 − i

k1 + i

q + i

q − i

is1 − eisk1
2−q2dzd

sk1
2 − q2d

e−isk1−qdy6 , sB21d

which is nonzero atz.0. Now we extract the main part of the integral forming at small values ofk1−q and find

kkPsz+ zdLszdll = −
p3D2

211 Re5E dkE
0

`

dp
sp2 + 1dsp2 − k2deisp2−k2dz

cosh3
pp

2
cosh

pk

2
sinh

psp − kd
2

6 . sB22d

Then we obtain
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kkPsz+ zdE
0

z

Lsz1ddz1ll = −
p3D2

210 ReHE dkE
0

`

dp
sp2 + 1deisp2−k2dz

cosh3spp/2dcoshspk/2d
is1 − eisp2−k2dzd

sinhfpsp − kd/2gJ . sB23d

The simultaneous correlation, i.e., the correlation atz=0, is

−
p4D2

210 E
0

` dp+sp+
2/4 + 1d

cosh4spp+/2d
< − 0.090D2. sB24d

Thus, the cross correlation is negligible.
Let us discuss remaining contributions to the impulse

fluctuations. The pair correlation function of the extra im-
pulse Pvh is <0.78D2dsz1−z2d, similar to Eq. (B14). The
corresponding contribution to the position fluctuation is
~D2z and can be omitted. Its cross correlation withL is
small because we take imaginary part in Eq.(3.24) and real
part in Eq. (3.24). This distinction leads to an expression
analogous to Eq.(B13) but with imaginary part of the inte-
gral, which is negligible. The simultaneous cross correlation
betweenPvh and P is similar to Eq.(B21) with an extra
factor −sp /2qdtanhspq/2d in the integrand and taking the
imaginary part of the integral instead of the real part. Then,
we find that it is negligible in comparison with Eq.(B24).
Summarizing the results obtained so far and using Eq.(B14),
we find Eq.(4.6).

APPENDIX C: FORCE AND IMPULSE IN ORTHOGONAL
POLARIZATION CASE

In this case, we have only the forceFvv and the extra
impulsePvv nonzero. Therefore, Eqs.(3.21) and (3.22) are
reduced to

d

dz
b1 = Fvv,

d

dz
y1 = h3 + 2b1 + Pvv. sC1d

First we examine the force. We representFvv=F0+F1
+F1

* , whereF0 andF1 contain the fieldH only in the form
of H*H andHH, respectively. Then, one can find, using Eqs.
s4.13d and s4.15d,

F0 =E dx
tanhx

cosh2x
E dq dk

s2pd2

eikx−iqxak'aq'
*

sk + id2sq − id2

3H2fsq − i tanhxd2 + sk + i tanhxd2g
cosh2x

+ 4cosh−4x + 4sq

− i tanhxd2sk + i tanhxd2J , sC2d

F1 =E dx
tanhx

cosh2x
E dq dk

s2pd2

eikx+iqxak'aq'

sk + id2sq + id2H 1

cosh4 x

+
4

cosh2 x
Fsq + id2 − 2iq

e−x

coshx
+

1

cosh2 x
G+ Fsk + id2

− 2ik
e−x

coshx
+

1

cosh2 x
GFsq + id2 − 2iq

e−x

coshx

+
1

cosh2 x
GJ . sC3d

Integration overx leads to

F0 =E dk dq

24p

iak'aq'
* sk2 − q2d2s1 + k2 + kq+ q2d

sk + id2sq − id2sinhfpsk − qd/2g
,

sC4d

F1 =E dk dq

48p

iak'aq'sk + qd2s1 + k2 + q2 − kqd
sk + id2sq + id2sinhfpsk + qd/2g

s2 + k2 + q2d.

sC5d

Substituting here the expressions4.18d, we obtain

F0 =
pi

3 3 25E dk dqsk2 − q2d2s1 + k2 + q2 + kqd
coshfpk/2gcoshfpq/2gsinhfpsk − qd/2g

3E
0

z

dz1dz2Hsz1dH*sz2deisk2+1dsz−z1d−isq2+1dsz−z2d

3
k − i

sk + id2

q + i

sq − id2eisq−kdy, sC6d

F1 =
− pi

3 3 26E dk dqsk + qd2s1 + k2 + q2 − kqds2 + k2 + q2d
coshspk/2dcoshspq/2dsinhfpsk + qd/2g

3E
0

z

dz1dz2Hsz1dH*sz2deisk2+1dsz−z1d−isq2+1dsz−z2d

3
k − i

sk + id2

q − i

sq + id2e−isq+kdy−2ia. sC7d

Taking integral and omitting exponentially small terms we
find

E
0

z

dz8Fvvsz8d = P0 + P1 + P1
* , sC8d

P0 =
p

3 3 25E dk dqsk2 − q2ds1 + k2 + q2 + kqd
coshfpk/2gcoshfpq/2gsinhfpsk − qd/2g

3E
0

z

dz1dz2Hsz1dH*sz2deisk2+1dsz−z1d−isq2+1dsz−z2d

3
k − i

sk + id2

q + i

sq − id2eisq−kdy, sC9d
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P1 =
p

3 3 26 E dk dqsk + qd2s1 + k2 + q2 − kqd
coshspk/2dcoshspq/2dsinhfpsk + qd/2g

3E
0

z

dz1dz1Hsz1dHsz2deisk2+1dsz−z1d−isq2+1dsz−z2d

3
k − i

sk + id2

q − i

sq + id2e−isq+kdy−2ia. sC10d

The extra impulsePvv can be represented as

Pvv =E dk dq

24p

ak'
* aq'sk + qdsk − qd2

sk − id2sq + id2sinhfpsk − qd/2g

3H4sq − kd + pfsk − qd2 + 4gcoth
psk − qd

2
J .

sC11d

Thus, in the orthogonal polarization case, we can rewrite Eq.
s3.22d as

d

dz
y = h3 + P = h3 + 2P0 + 4 ResP1d + Pvv. sC12d

1. Average impulse

As it follows from Eq. (3.6), the average value of the
impulseP1 is zero. Therefore, one only needs to examineP0
andPvv terms. Using Eq.(3.7) one can obtainsk±=k±qd

kP0l =
piD

96
E dk+ dk−

1 − eik+k−z

sinhspk−/2d
e−ik−y

3
1 + k2 + q2 + kq

coshspk/2dcoshspq/2d
sk − id
sk + id2

sq + id
sq − id2 .

sC13d

The integral is formed at small values ofk−, and we obtain

kP0l =
pD

24
E

0

`

dk+
1 + 3k+

2/4

s1 + k+
2/4dcosh2spk+/4d

< 0.23D.

sC14d

The average of the impulsePvv is sk±=k±qd

kPvvl =
pD

96
E dk dq

q − i

sq + id2

k + i

sk − id2eik−y

3
1 − e−ik+k−z

i sinhspk−/2dF− 4k− + psk−
2 + 4dcoth

pk−

2
G

=
pD

12
E

0

` dp

s1 + p2d cosh2spp/2d
<0.137D. sC15d

Thus, the total average impulse is

kPl = 2kP0l + kPvvl < 0.6D. sC16d

The impulse contribution to the fluctuation of the soliton
positions is of the order ofD2 and is negligible in compari-
son with the contributionDz, coming fromh3 in Eq. sC12d.
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