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Adjustable subwavelength localization in a hybrid

plasmonic waveguide

The hybrid plasmonic waveguide consists of a high-permittivity dielectric nanofiber
embedded in a low-permittivity dielectric near a metal surface. This architecture is
considered as one of the most perspective candidates for long-range subwavelength guiding.
The dispersion relation of the fundamental mode of hybrid waveguide is obtained analytically
within the quasi-electrostatic approximation. For the first time, to our knowledge, the infinite
set of linear algebraic equations for solving the eigenmodes problem in this geometry, in
general, is explicitly written. The numerical solution based on this approach is obtained and
discussed. Our qualitative analysis and numerical results reveal advantages of the special
waveguide design when dielectric constant of the cylinder is greater than the absolute value
of the dielectric constant of the metal.
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1. Introduction

The creation of the waveguides capable of guiding light with deep subwavelength confinement
in the cross section is of great interest for practical applications. These devices may throw open
the doors to nanoscale optical communications, quantum computing, nanoscale lasers and bio-
medical sensing. The main problem on the way to practical realization is the diffraction limit of
light in dielectric media. Electromagnetic energy can’t be localized into nanoscale regions much
smaller than the wavelength of light in the dielectric [1]. The possible solution to this problem
is to use a material with negative dielectric permittivity. For example, metals are known to
exhibit this property below the plasma frequency. Metal structures provide guiding of the surface
plasmon-polaritons (SPP), which are localized near metal-dielectric interfaces and can be guided
by metallic nanostructures beyond the diffraction limit [2]. However in practice it is a challenge
to provide the deep localization with large propagation length due to the presence of Ohmic
losses in metal.

For the simplest geometry like a metal films or wires [3] - [5] the deep localization can
be achieved at restricted values of the metal permittivity 𝜀m, whereas low propagation loss
length needs large ratio of its real to imaginary parts, 𝜀′m/𝜀

′′
m. These two requirement cannot

be satisfied simultaneously for most materials. The new approach for this challenge integrates
dielectric waveguide with plasmonics one. The hybrid plasmonic waveguide consists of a high-
permittivity dielectric nanofiber separated from a metal screen by low-permittivity dielectric
nanoscale gap [6]. Both the single fiber and the silver screen cannot provide strong mode
confinement at optical and near infrared frequencies, but the hybrid conductor-gap-dielectric
architecture have experimentally demonstrated deep subwavelength optical waveguiding [8].
Relatively large propagation length has been achieved due to high ratio 𝜀′m/𝜀

′′
m at the chosen

frequency and the specific spatial structure of the guiding mode.

In the present paper we propose and discuss another realization of the hybrid approach
proposed in [6]. We show that the hybrid plasmon polariton(HPP) mode confinement can be
considerably risen by a specific choice of the materials, when the dielectric constant of the
cylinder is greater than the absolute value of the dielectric constant of the metal screen. The
main advantage of the choice is the hyperbolic-like dependence of the effective index on the gap
width. This feature allows to maintain arbitrary subwavelength mode size at any frequency by
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adjusting the gap width. This freedom considerably widens the range of possible materials which
the waveguide can consist of. The geometry of the waveguide admits implementation of the loss
compensation techniques based both on optical pumping [13] and on electrical injection [11],
that makes our realization of the waveguide potentially interesting for applications. To justify
our idea we theoretically investigate propagation of the HPP-mode. First we give qualitative
analysis of the guiding mode basing on the consideration of planar sandwich-like conductor-gap-
dielectric waveguide structure(CGD) [19]. We derive exact analytical expression for effective
index of CGD-mode and give criterion when the HPP-mode is CGD-like. Finally, we present
semi-analytical approach of calculation of the electromagnetic field structure for the fundamental
HPP-mode, which is applicable to any set of parameters. Similar approach has previously been
applied for plane wave scattering by a cylinder placed near plane surface [9]- [10]. Here we
present the first realization of this method for waveguiding problem at system with the hybrid
geometry. The scheme is based on expansion of the HPP-mode over single cylinder modes and
the surface plasmon polariton modes of the metal screen and matching the boundary conditions
for electromagnetic field components. Numerically obtained dispersion relations confirmed the
advantages of our design of the hybrid waveguide.

2. Qualitative description

We consider the following geometry of the hybrid waveguide. A dielectric cylinder with
circular cross-section is placed above a metal screen. The cylinder radius is 𝑅, and the width of
the gap between the cylinder and the metal screen is ℎ, see Fig.1a) for a cross section. We consider
a plasmon-polariton mode, that propagates along the waveguide and is bound in the transversal
plane. The frequency of the mode is 𝜔 and the propagation constant is 𝛽. We choose the Cartesian
reference system with z-axis directed along the waveguide, whereas x-axis is directed normally
to the metal screen. Thus, all electromagnetic field components have dependence on time and
𝑧-coordinate as exp[𝑖𝛽𝑧 − 𝑖𝜔𝑡]. We assume, that responses of both dielectric and metal on
electromagnetic field are described by dielectric constants, which are 𝜀m and 𝜀d correspondingly.
Generally, the outer medium may be not vacuum, but some dielectric medium having dielectric
constant being equal to 𝜀g. All the materials are assumed to be nonmagnetic. To describe the
mode confinement, it is convenient to introduce effective refractive index 𝑛eff , which is defined
as 𝑛eff = 𝛽/𝑘, where 𝑘 = 𝜔/𝑐 in the wavenumber in vacuum. The effective refractive index

determines the field penetration depth into the materials with permittivity 𝜀 as 1/𝑘
√︁
𝑛2eff − 𝜀.

The penetration depth should be real in the unbounded waveguide constituents (metal and outer
dielectric space), and may be imaginary for bounded constituents (fiber). Thus the greater 𝑛eff
is the stronger field localization is in the transversal plane.

Fig. 1. a) The hybrid waveguide. b) Plain waveguide with the same width of the gap

Optimization for transversal confinement implemented in [6] for hybrid waveguide shows
that the thinner gaps provide higher localization. The fiber radius is much greater than the
gap width in the case and the waveguide shape is close to plain sandwich like conductor-gap-
dielectric (CGD) structure in the gap region. The limit of plain CGD-structure was considered
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in [19], where the properties of the bound fundamental mode were investigated. One of the main
advantage of the mode is that effective index of the mode 𝑛CGD is greater than the refractive
index of the dielectric 𝑛d =

√
𝜀d, 𝑛CGD > 𝑛d. This implies, that the electromagnetic field of

the mode decays exponentially into the dielectric cladding. Nevertheless, the analysis proposed
in [19] is not applicable to mode of waveguide with optimal parameters found in [6]. The reason is
that the mode of plain CGD-model indeed describes the HPP-mode only for large enough fiber
diameter 𝑑 otherwise HPP-mode should be considered as a result of hybridization of surface
plasmon polariton modes and the modes of the dielectric cylinder.

The main goal of the present work is to give the theoretical description of the hybrid
waveguide and to find approaches to deeper localization of the HPP-mode. Comparative analysis
of [6, 19] suggests, that in order to get stronger transversal miniaturization of the hybrid
waveguide the CGD-like regime of propagation should be achieved for the radius which is
much less than free space wavelength. Our analysis of the plain CGD-structure shows that
the localization of the fundamental mode can be significantly risen for special set of materials,
when absolute value of the metal dielectric constant is less than the dielectric constant of the
dielectric cladding, |𝜀m| < 𝜀d. For the case, the effective refractive index 𝑛CGD is proportional
to inverse width of the gap, 𝑛CGD ∝ 1/𝑘ℎ, when the width ℎ is small enough. To use the same
effect for the hybrid waveguide, the cylinder diameter should sufficiently exceed some critical
value 𝑑*, which is determined by the condition that the transversal size of the plain part of the
gap is comparable with the mode penetration depth into the dielectric 1/𝜅d. The size of the
plain part of the gap is evaluated as 2

√
ℎ𝑑, thus the condition is 2

√
ℎ𝑑* ≈ 1/𝜅d. For 𝑑 greater

enough than 𝑑* the guiding mode can approach the strongly confined mode of the sandwich like
system even if the diameter of the cylinder is much less than free space wavelength.

In order to give general physical argumentation of our results let us consider planar sandwich-
like CGD-waveguide in details. The wave vector of fundamental CGD-mode (which is TM-mode)
can be calculated from equation [19]

exp[2ℎ𝜅g] =
(𝜀d𝜅g − 𝜀g𝜅d)(𝜀m𝜅g − 𝜀g𝜅m)

(𝜀d𝜅g + 𝜀g𝜅d)(𝜀m𝜅g + 𝜀g𝜅m)
, (1)

where 𝜅𝑖 = 𝑘
√︀
𝑛2CGD − 𝜀𝑖 for each material, 𝑖 = ‘m’,‘g’,‘d’ and 𝑛CGD is the effective index of the

mode. In particular, 1/𝜅d and 1/𝜅m are the penetration depth into the dielectric and the metal
correspondingly. It is known that such plane three-layer waveguide supports the propagation of
the bound eigen mode only if the width of the intermediate layer is less than some cut-off value
ℎ𝑐 which is determined by the permittivities at given frequency

ℎ𝑐 =
𝜆

4𝜋
√
𝜀d − 𝜀g

log
𝜀m

√
𝜀d − 𝜀g − 𝜀g

√
𝜀d − 𝜀m

𝜀m
√
𝜀d − 𝜀g + 𝜀g

√
𝜀d − 𝜀m

(2)

When thickness exceeds this critical value the fundamental CGD-mode becomes radiative with
energy leaking into upper dielectric half space.

There is a significant difference between the dependence of the effective index 𝑛CGD on the
gap thickness ℎ for the cases of low and high index dielectric. For relatively low refractive index
of dielectric, when 𝜀d < |𝜀m|, there exists surface plasmon-polariton mode when the gap is
absent, ℎ = 0. It has effective index 𝑛md =

√︀
𝜀m𝜀d/(𝜀d + 𝜀m). Then the effective index of the

fundamental CGD-mode is bounded, 𝑛d < 𝑛CGD < 𝑛md. Just the case was considered in [19]
and [6]. Otherwise when permittivity of dielectric is relatively high

𝜀d > |𝜀m| > 𝜀g, (3)

the effective index 𝑛CGD unlimitedly diverges as the gap thickness tends to zero, ℎ≪ 𝜆/
√
𝜀d:

𝑛CGD ≈ 1

2𝑘ℎ
ln

(𝜀d − 𝜀g)(𝜀m − 𝜀g)

(𝜀d + 𝜀g)(𝜀m + 𝜀g)
(4)
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Fig. 2. Thickness dependence of the CGD mode’ effective index

It leads to extremely strong light confinement in a transparent dielectric gap layer located
between the high-index dielectric and the conductor. The actual degree of localization is
restricted only by additional factors, such as increasing Ohmic losses in the metal, spatial
dispersion and atomic structure of the materials. This feature is the principle behind our idea:
in practice one should choose the metal with the absolute permittivity less than the permittivity
of the cylinder and place cylinder at distance ℎ < ℎc from the metal plane. When such metal
is involved the effective index of the HPP mode can be significantly greater than effective index
of electromagnetic field in bulk material of the cylinder even for very small diameters of the
cylinder.

However there is reverse side of the strong localization which is small propagation length. It
was shown in [6] that the strongest localization of the HPP-mode corresponds to the lowest
propagation length. It is common place of waveguides which use metal as a constructive
component. Let us consider limit when the gap index is low, so 𝜀g ≪ |𝜀m|. For the case

𝑛CGD ≈ 1

𝑘ℎ|𝜀m|

(︂
1− |𝜀m|

𝜀d
+ 𝑖

𝜀′′m
|𝜀m|

)︂
(5)

where 𝜀′′m is the imaginary part of the metal permittivity. It follows from Eq. (5), that the
localization radius is of the order of ℎ|𝜀𝑚| in the limit ℎ ≪ ℎ𝑐. Note, that our approach
allows to squeeze the mode at arbitrary frequency into any subwavelength scale simply by
tuning the gap width in accordance with (4). Hence, our waveguide design breaks connection
between mode localization and the carrying frequency of the mode. In particular, the approach
may be interesting for design waveguides at THz frequencies [20, 21]. The propagation length
ℓ ∼ ℎ|𝜀m|/|𝑡𝑔| i.e. reduces with the mode size reduction. To keep the propagation length
acceptable for practical implementation at fixed localization radius one should minimize loss
tangent 𝑡𝑔. Thus, a prospecting like [22] is needed to propose the optimal choice of materials for
our approach (3).

3. Theoretical description

In the section, we discuss the semi-analytical approach to the problem and present
the numerical results. It follows from Maxwell’s equations that the electromagnetic field of
propagating modes can be fully described by 𝑧-components of the electric and the magnetic
fields, 𝐸𝑧 and 𝐵𝑧 [14]. Both of these fields satisfy the following two-dimensional Helmholtz
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Fig. 3. Effective refractive index of the fundamental hybrid mode versus cylinder diameter 𝑑 (coloured
lines) compared with those of single fiber(black solid line) and SPP mode(lower black broken line). The
dielectric constant of the cylinder, dielectric and metal are 𝜀d = 12.25 𝜀g = 2.25 and 𝜀m = −129 + 3.3𝑖
respectively at wavelength 𝜆 = 1.55𝜇𝑚. These parameters are chosen in accordance with [6]. The critical
gap width ℎc = 5𝑛𝑚. The HPP-to-CGD crossover point: 𝑑* ≈ 17𝜇𝑚 for ℎ = 2𝑛𝑚

differential equation inside the homogeneous areas where dielectric permittivity is constant:

Δ⊥
{︂
𝐸𝑧

𝐻𝑧

}︂
−
(︀
𝛽2 − 𝜀𝑘2

)︀{︂ 𝐸𝑧

𝐻𝑧

}︂
= 0, (6)

In (6) Δ⊥ = 𝜕2𝑥 + 𝜕2𝑦 and 𝑘 = 𝜔/𝑐 is the wavenumber. The boundary conditions on the both
interfaces are continuity of components 𝐸𝑧, 𝐻𝑧, 𝜀𝐸𝜉 and 𝐻𝜉, where 𝜉-component of a vector is
its normal component.

Our semi-analytical method is based on the representation of the hybrid waveguide as an
integration of the dielectric fiber and plane plasmonic waveguide. We express the electromagnetic
field of the HPP-mode as a linear combination of cylindrical mode around the fiber and
evanescent plane waves above the metal screen. Boundary conditions provide the system of
linear equations on the expansion coefficients. Such an approach leads to highly efficient method
of numerical solving a difficult boundary-value problem that describes the propagation of waves
in a complex systems [15]- [16]. The scheme is developed in details in Appendix 1.

To verify our semi-analytical method, in Fig.3 we present the dependence of the effective
index of the fundamental hybrid mode on the cylinder diameter 𝑑 = 2𝑅 for a range of the gap
widths ℎ in the case of telecommunication wavelength when 𝜀g < 𝜀d < |𝜀m|. These dispersion
curves are obtained from our numerical procedure and show good agreement with the results
obtained in [6] by using finite-element package FEMLab from COMSOL.

In accordance with our general argumentation given in Section 2 we present two sets of
plots. Fig.4 corresponds to the case of fiber with comparatively low refractive index, 𝜀d < |𝜀m|,
the parameters of the waveguide are taken in accordance with experimental work [13]. Fig.5
corresponds to opposite limit, when 𝜀d > |𝜀m|. Parameters of these two plots differ only for
metal permittivity 𝜀m, the value 𝜀m = −4 is chosen for Fig.5. Here, we do not concretize the
material of the metal screen, our goal is just to demonstrate the qualitative difference of the
guiding mode properties for the case (3).

Finding results indicate that when fiber diameter 𝑑 is decreased, the HPP-mode loses
confinement along the metal and eventually (at 𝑑 = 0) becomes a surface plasmon-
polariton mode of the flat metal-gap interface. Herewith the effective index of the HPP-mode
monotonically decreases to that of this SPP-mode. Thus all dispersion curves have the same
asymptotic 𝑛eff → 𝑛mg =

√︀
𝜀𝑚𝜀𝑔/(𝜀𝑚 + 𝜀𝑔) at small 𝑑. Two different characters of behavior are
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Fig. 4. Wave vector of the fundamental hybrid
mode versus the cylinder diameter 𝑑 (coloured
lines) compared with those of single fiber(black
solid line) and SPP mode(lower black broken line).
The dielectric constant of the cylinder, dielectric
and metal are 𝜀d = 5.76 𝜀g = 1 and 𝜀m = −9.2
respectively at wavelength 𝜆 = 0.49𝜇𝑚. These
parameters are chosen in accordance with [13]. The
critical gap width ℎc = 7𝑛𝑚. The HPP-to-CGD
crossover points are: 𝑑* ≈ 310𝑛𝑚 for ℎ = 2𝑛𝑚 ,
𝑑* ≈ 875𝑛𝑚 for ℎ = 5𝑛𝑚.

Fig. 5. Wave vector of the fundamental hybrid
mode versus cylinder diameter 𝑑(coloured lines)
compared with those of single fiber(black solid
line) and SPP mode(lower black broken line). The
dielectric constant of the cylinder, dielectric and
metal are 𝜀d = 5.76 𝜀g = 1 and 𝜀m = −4
respectively at wavelength 𝜆 = 0.49𝜇𝑚. The
critical gap width ℎc = 13, 4𝑛𝑚. The HPP-to-CGD
crossover points(black arrows) are: 𝑑* ≈ 40𝑛𝑚 for
ℎ = 2𝑛𝑚, 𝑑* ≈ 65𝑛𝑚 for ℎ = 5𝑛𝑚, 𝑑* ≈ 220𝑛𝑚
for ℎ = 10𝑛𝑚

possible at the opposite limit of large diameter. As the diameter 𝑑 → ∞, the HPP-mode can
asymptotically tend either fundamental single fiber mode or the fundamental mode of the planar
three-layer system, the choice depends on the gap width ℎ. If the gap thickness ℎ is less than ℎc
(Eq.(2)), the HPP-mode approaches the CGD-mode as the diameter increases. If the crossover
between the asymptotics occurs at 𝑑*(black arrows in Fig.5) which is determined as

𝑑* ≈ 1

4(𝑛2CGD − 𝜀d)ℎ𝑘2
(7)

For ℎ > ℎc the HPP-mode becomes cylinder-like in the limit of the large diameter. In
the case the critical diameter 𝑑0 corresponding to the transition between small-diameter and
large-diameter asymptotics is defined by the equation 𝑛SF(𝑑0) = 𝑛mg where 𝑛SF(𝑑) is the
diameter dependence of the effective index of the single fiber fundamental mode. If the condition√
𝜀d𝑘𝑑 ≪ 1 is valid, we can show that the localization of this mode is exponentially small,

𝑛SF =
√
𝜀g + 𝜅g/(2

√
𝜀g𝑘), where

𝜅g/𝑘 ≈ 16𝑒−2𝛾+1

√
𝜀g(𝑘𝑑)2

exp

{︂
− 8(𝜀d + 𝜀g)

𝜀g(𝜀d − 𝜀g)(𝑘𝑑)2

}︂
≪ 1, (8)

and 𝛾 = 0.5772... is the Euler-Mascheroni constant.
Let us suppose the effective index 𝑛CGD of the CGD-mode to be not much above that of

bulk plane wave in the fiber medium. This assumption is true for example at the conventional
plasmonic condition when the absolute value of metal permittivity is sufficiently greater than the
dielectric permittivity, |𝜀m|/𝜀d−1 & 1. Then the field penetration depth into the upper dielectric
is quite large as well as the HPP-to-CGD crossover diameter 𝑑* ≫ 𝜆, so the CGD-mode does
not provide the strong confinement. Therefore there are no advantages of CGD-like limit in the
case from the view of HPP-mode confinement. For a given frequency and gap width the choice
with the strongest coupling of the fiber mode and the surface plasmon mode, corresponding to
𝑑 = 𝑑0, provides the strongest localization of the field within nanogap due to the great contrast
of permittivities [6]. At the same time significant part of energy is transferred inside the fiber,
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thus the waveguide mode confinement is achieved largely due to the boundedness of the high-
permittivity dielectric part of the waveguide. Once the radius of the fiber is optimum and the
gap width is small enough the advantages of the hybrid architecture are used completely: cross
section size of the system can be much less than the wavelength and mode confinement is much
stronger than for uncoupled single fiber or flat metal-dielectric interface. To achieve further
increase of the HPP-mode confinement the fiber with higher dielectric constant should be used.

Next let us assume that effective index of the CGD-mode is significantly larger that the
refractive index of the fiber medium. This can be achieved by diminishing the gap thickness in
the case (3). Then the CGD-mode have strong confinement so the crossover diameter can be
decreased to deep subwavelength scale, 𝑑* ≪ 𝜆, by tuning the gap width. Therefore the attractive
CGD-like asymptotic is achieved by HPP-mode with very small diameter of cylinder providing
the wished structure of the mode with the strong transversal localization in two dimensions
within the gap region and exponential decaying into the cylinder. Note that in the case the
particular shape of the top part of the fiber cross section which is at distances much larger than
1/𝜅d from the gap does not play role any more [19].

4. Longwavelength limit

In this section we demonstrate the solvable limit of the hybrid waveguide. Assuming quasi-
electrostatic approximation

√
𝜀d𝑘𝑑 ≪ 1 to be valid one can consider the second term in the

Helmholtz equation as the perturbation of the Laplace operator. Then longitudinal components
of the electromagnetic field to a zero approximation are defined by the two-dimensional Laplace
equation:

Δ⊥

{︃
𝐸

(0)
𝑧

𝐻
(0)
𝑧

}︃
= 0, (9)

Let us suppose the electromagnetic wave frequency to be much below the plasma frequency, so
the metal can be considered as the perfect conductor. It physically corresponds to the condition
|𝜀m| ≫ 𝜀d, 𝜀g. Thus under this assumption our problem reduces to boundary-value problem of
cylindrical dielectric waveguide placed parallel to the surface of a perfect conductor. It should be
also mentioned that, in fact, our problem is equivalent to finding the eigenmodes in the system
of two identical parallel dielectric waveguides separated by a distance 2ℎ. Those eigenmodes of
this system for which the tangential electric field components are vanishing in the symmetry
plane are the eigenmodes of our system too. It is because the symmetry plane can be replaced
by a perfect conductor plane without causing any effect in this case.

The smallness of the parameter
√
𝜀d𝑘𝑑 ≪ 1 allows us to develop the perturbation theory

and take into account the retardation in the Helmholtz equation. The details of the approach
is given in Appendix 2. Imposing the boundary conditions on the perfectly conducting metal
surface we find the following dispersion relation for the fundamental dipole-like mode

𝑛eff −√
𝜀g ∼ 1

√
𝜀g𝑎2𝑘2

· exp
{︂
−𝑒

𝜉0(𝜀d sinh 𝜉0 + 𝜀g cosh 𝜉0)

2𝜀g(𝜀d − 𝜀g)𝑘2𝑎2

}︂
(10)

where pre-exponential factor is inaccurate because of logarithmic accuracy of our calculations
and the notations

𝑎 =
√︀
ℎ(𝑑+ ℎ), 𝜉0 = ln

√︀
ℎ(𝑑+ ℎ) + ℎ√︀
ℎ(𝑑+ ℎ)− ℎ

. (11)

are introduced.

The form of this result is similar to the dispersion relation of the fundamental mode in
single thin fiber (Eq.(8)) which can be obtained within the same perturbation method in long-
wavelength limit or as the expansion of the exact formula.

The parameter 𝑛eff − √
𝜀g is actually a measure of localization of the investigated mode.

It determines the difference between wave vector of the plane-wave in the outside region and
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wave vector of the guided mode. The ratio 𝑘−1/
√︁
𝑛2eff − 𝜀g gives an estimate for a depth of

penetration of the mode into outside region. Thus, decreasing the radius of cylinder leads to
deeper penetrating of the mode into the surrounding space. The same is true for the decreasing
the separation ℎ. So there is no subwavelength guiding in this system in quasi-electrostatic limit.

5. Conclusion

In the paper we have proposed the novel approach for hybrid plasmonic waveguide design
providing wide opportunity for HPP-mode size controlling. When the permittivity of the
dielectric is greater than the real part of metal permittivity the hybrid effective index is
unlimited(Eq.(4)) and can be tuned by the waveguide geometry at fixed frequency and materials
constituting the waveguide. This feature of the case (3) is confirmed by both qualitative analyse
within planar three-layer model and rigorous semi-analytical method describing the HPP-mode
propagation in general. We have described the different regimes of guiding and derived the
estimation for HPP-to-CGD crossover diameter(Eq.7).

In order to find the dispersion relation of fundamental hybrid mode for the case |𝜀m| ≫ 𝜀d, 𝜀g
we have developed perturbation theory using smallness

√
𝜀d𝑘𝑑 ≪ 1 within quasi-electrostatic

approximation. The same perturbative approach could also be applied to various range of
problem for which Helmholtz differential equation is not separable. The dispersion relation of
the hybrid waveguide finding within approximation of the perfectly conducting metal is similar
to that of the single optical fiber. It is due to the fact that perfect metal does not support the
plasmonic waves and then the hybrid waveguide is pure dielectric one with very weak localization
in long-wavelength limit.

The work was supported by Russian Ministry of Education and Science.

1. Numerical method

The theoretical description of the hybrid waveguide is inhibited by its complex geometry. In
general we should chose such system of coordinates where the surfaces of the waveguide are the
isolines and Helmholtz equation can be solved by separation of variables. The hybrid geometry
corresponds to the so called bipolar coordinates based on two sets of orthogonal circles. In this
coordinate system the Helmholtz equation has quite complicated form and accordingly the set
of eigen functions can’t be found analytically. However the unknown hybrid eigen functions can
be expressed in terms of known solutions of the Helmholtz equation in other coordinate systems.
It is convenient to represent the total electromagnetic field of HPP-mode as the superposition of
the all modes of single fiber(cylindrical functions) and all SPP modes(evanescent plane waves)
with some unknown coefficients of expansion.

Supposing the structure of the fundamental hybrid mode to be symmetric with respect to
𝑥-axis we can describe the longitudinal component of the electric field as⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐸
(d)
𝑧 =

∑︀∞
𝑛=0 𝑎

𝐸
𝑛 𝐽𝑛(𝜒𝑑𝑟) cos𝑛𝜙

𝐸
(g)
𝑧 =

∑︀∞
𝑛=0 𝑏

𝐸
𝑛𝐾𝑛(𝜅g𝑟) cos𝑛𝜙+

+
´∞
0 𝑐𝐸𝑞 exp(𝑄𝜅g(𝑥−𝐷)) cos 𝑞𝜅g𝑦 𝑑𝑞

𝐸
(m)
𝑧 =

´∞
0 𝑑𝐸𝑞 exp(−𝑄𝜅m(𝑥−𝐷)) cos 𝑞𝜅m𝑦 𝑑𝑞

(12)

and 𝑧-components of the magnetic field as⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐻

(d)
𝑧 =

∑︀∞
𝑛=0 𝑎

𝐻
𝑛 𝐽𝑛(𝜒𝑑𝑟) sin𝑛𝜙

𝐻
(g)
𝑧 =

∑︀∞
𝑛=0 𝑏

𝐻
𝑛 𝐾𝑛(𝜅g𝑟) sin𝑛𝜙+

+
´∞
0 𝑐𝐻𝑞 exp(𝑄𝜅g(𝑥−𝐷)) sin 𝑞𝜅g𝑦 𝑑𝑞

𝐻
(m)
𝑧 =

´∞
0 𝑑𝐻𝑞 exp(−𝑄𝜅m(𝑥−𝐷)) sin 𝑞𝜅m𝑦 𝑑𝑞

(13)
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where 𝑄 =
√︀

1 + 𝑞2 and 𝐷 = 𝑑/2 + ℎ.
To write the corresponding equations, it is convenient to express the fields inside dielectric in

terms of only plane evanescent waves, when we impose the continuity conditions on the boundary
of the metal, and in terms of angular harmonics, for the cylindrical surface. We solve it by using
the evanescent plane wave expansion of modified cylindrical functions and angular harmonic
spectrum of the evanescent plane waves [18].

𝐾𝑛(𝜅g𝑟)𝑒
𝑖𝑛𝜙 =

ˆ +∞

−∞

(𝑞 +𝑄)𝑛

2𝑄
𝑒−𝑄𝜅g𝑥+𝑖𝑞𝜅g𝑦𝑑𝑞. (14)

Using this formula be obtain

𝐾𝑛(𝜅g𝑟) cos𝑛𝜙 =

ˆ ∞

0
𝐹𝐸
𝑛 (𝑞)𝑒−𝑄𝜅g𝑥 cos 𝑞𝜅g𝑦 𝑑𝑞, (15)

𝐾𝑛(𝜅g𝑟) sin𝑛𝜙 =

ˆ ∞

0
𝐹𝐻
𝑛 (𝑞)𝑒−𝑄𝜅g𝑥 sin 𝑞𝜅g𝑦 𝑑𝑞, (16)

where

𝐹𝐸
𝑛 =

(𝑄+ 𝑞)𝑛 + (𝑄− 𝑞)𝑛

2𝑄
, (17)

𝐹𝐻
𝑛 =

(𝑄+ 𝑞)𝑛 − (𝑄− 𝑞)𝑛

2𝑄
. (18)

We also need to expand the SPP modes into a series of the angular harmonics

𝑒𝑄𝜅g𝑥 cos 𝑞𝜅g𝑦 =

∞∑︁
𝑛=0

𝐺𝐸
𝑛 cos𝑛𝜙, (19)

𝑒𝑄𝜅g𝑥 sin 𝑞𝜅g𝑦 =
∞∑︁
𝑛=0

𝐺𝐻
𝑛 sin𝑛𝜙, (20)

where

𝐺𝐸
𝑛 =

2− 𝛿0𝑛
2

((𝑄+ 𝑞)𝑛 + (𝑄− 𝑞)𝑛)𝐼𝑛(𝜅g𝑟), (21)

𝐺𝐻
𝑛 = ((𝑄+ 𝑞)𝑛 − (𝑄− 𝑞)𝑛)𝐼𝑛(𝜅g𝑟). (22)

Electromagnetic fields in surrounding medium close to the dielectric waveguide can be written
as

𝐸(g)
𝑧 =

∞∑︁
𝑛=0

𝑏𝐸𝑛𝐾𝑛(𝜅g𝑟) cos𝑛𝜙 +

+

∞∑︁
𝑛=0

cos𝑛𝜙

ˆ ∞

0
𝑐𝐸𝑞 𝐺𝑛(𝑟, 𝑞)𝑒

−𝑄𝜅g𝐷 𝑑𝑞
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𝐻(g)
𝑧 =

∞∑︁
𝑛=0

𝑏𝐻𝑛 𝐾𝑛(𝜅g𝑟) sin𝑛𝜙 +

+

∞∑︁
𝑛=0

sin𝑛𝜙

ˆ ∞

0
𝑐𝐻𝑞 𝐺𝑛(𝑟, 𝑞)𝑒

−𝑄𝜅g𝐷 𝑑𝑞

The corresponding expressions for the fields close to the surface of the metal are:

𝐸(g)
𝑧 =

ˆ ∞

0

∞∑︁
𝑛=0

𝑏𝐸𝑛𝐹
𝐸
𝑛 (𝑞)𝑒−𝑄𝜅g𝑥 cos 𝑞𝜅g𝑦 𝑑𝑞 +

+

ˆ ∞

0
𝑐𝐸𝑞 𝑒

𝑄𝜅g(𝑥−𝐷) cos 𝑞𝜅g𝑦 𝑑𝑞,

𝐻(g)
𝑧 =

ˆ ∞

0

∞∑︁
𝑛=0

𝑏𝐻𝑛 𝐹
𝐻
𝑛 (𝑞)𝑒−𝑄𝜅g𝑥 sin 𝑞𝜅g𝑦 𝑑𝑞 +

+

ˆ ∞

0
𝑐𝐻𝑞 𝑒

𝑄𝜅g(𝑥−𝐷) sin 𝑞𝜅g𝑦 𝑑𝑞.

It can be easily derived from the Maxwell equations that for the normal component:

𝐸𝜉 = − 𝑖𝛽

𝛽2 − 𝜀𝑘2
𝜕𝐸𝑧

𝜕𝜉
+

𝑖𝑘

𝛽2 − 𝜀𝑘2
𝜕𝐻𝑧

𝜕𝜂
, (23)

𝐻𝜉 = −𝜀 𝑖𝑘

𝛽2 − 𝜀𝑘2
𝜕𝐸𝑧

𝜕𝜂
− 𝑖𝛽

𝛽2 − 𝜀𝑘2
𝜕𝐻𝑧

𝜕𝜉
. (24)

where 𝜂 is tangent to the interface coordinate in the transversal plane.
The continuity conditions on the metal surface for 𝐸𝑧, 𝐵𝑧, 𝐸𝑦 and 𝐵𝑦 lead to the first system

of linear homogeneous equations (SLE) on coefficients 𝑏𝐸𝑛 , 𝑏
𝐻
𝑛 , 𝑐

𝐸
𝑞 , 𝑐

𝐻
𝑞 , 𝑑

𝐸
𝑝 , 𝑑

𝐻
𝑝 . The corresponding

continuity conditions for 𝐸𝑧, 𝐵𝑧, 𝐸𝜙 and 𝐵𝜙 on the cylindrical surface produce the second SLE
on amplitudes 𝑎𝐸𝑛 , 𝑎

𝐻
𝑛 , 𝑏

𝐸
𝑛 , 𝑏

𝐻
𝑛 , 𝑐

𝐸
𝑞 , 𝑐

𝐻
𝑞 , which is now integral with respect to 𝑐𝐸𝑞 , 𝑐

𝐻
𝑞 . In order

to avoid integration of the unknown functions we express the coefficients 𝑐𝐸𝑞 , 𝑐
𝐻
𝑞 in the terms

of 𝑏𝐸𝑛 , 𝑏
𝐻
𝑛 from the first SLE and substitute them into the second SLE. The procedure leads to

the infinite system of linear homogeneous algebraic equations for coefficients 𝑎𝐸𝑛 , 𝑎
𝐻
𝑛 , 𝑏

𝐸
𝑛 , 𝑏

𝐻
𝑛 .

In order to solve the system numerically finding the dispersion law, one should truncate this
system to a finite size 𝑁 .

2. Perturbation theory

To solve Laplace equation we use so-called bipolar coordinate system [12] which is convenient
for two reasons. First of all both circular line of cross-section of the cylinder and straight
boundary of the metal are the lines of the constant value of scale coordinate of this system
for particular choice of definite parameter. Secondly bipolar coordinates allow the separation of
variables for Laplace equation.

The scale factors in bipolar system of coordinates are equal to

ℎ𝜉 = ℎ𝜂 =
𝑎

cosh 𝜉 − cos 𝜂
, (25)

and Laplacian is given by

Δ⊥ =
(cosh 𝜉 − cos 𝜂)2

𝑎2
(
𝜕2

𝜕𝜂2
+

𝜕2

𝜕𝜉2
). (26)
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Let 𝜉0 corresponds the line of cross section of the cylinder. We than find

𝑎 =
√︀
ℎ(𝑑+ ℎ), (27)

𝜉0 = ln

√︀
ℎ(𝑑+ ℎ) + ℎ√︀
ℎ(𝑑+ ℎ)− ℎ

. (28)

Using the boundary conditions on the perfectly conducting metal surface we have for 𝑧-
components of the electric and magnetic field of the dipole mode to zero approximation:

𝐸(0)
𝑧 =

{︃
𝐸

(0)𝑖𝑛
𝑧 = 𝐴𝑖𝑛

1 𝑒
−𝜉 cos 𝜂,

𝐸
(0)𝑜𝑢𝑡
𝑧 = 𝐴𝑜𝑢𝑡

1 sinh 𝜉 cos 𝜂
(29)

𝐻(0)
𝑧 =

{︃
𝐻

(0)𝑖𝑛
𝑧 = 𝐵𝑖𝑛

1 𝑒
−𝜉 sin 𝜂,

𝐻
(0)𝑜𝑢𝑡
𝑧 = 𝐵𝑜𝑢𝑡

1 cosh 𝜉 sin 𝜂
(30)

where we denote field inside the cylinder by notation ”𝑖𝑛” and the field outside by ”𝑜𝑢𝑡”.
Next we should find the terms of first order for which we have the inhomogeneous Laplace

equations:

Δ⊥

{︃
𝐸

(1)
𝑧

𝐻
(1)
𝑧

}︃
=

(︀
𝛽2 − 𝜀𝑘2

)︀{︃ 𝐸
(0)
𝑧

𝐻
(0)
𝑧

}︃
(31)

It seems to be impossible to solve these equations analytically in the bipolar coordinates
because of the complex form of scale factor (25). But one can note that the functions in their
right-hand parts can be rewritten as

𝐸(0)
𝑧 =

⎧⎪⎨⎪⎩
𝐸

(0)𝑖𝑛
𝑧 = 𝐴𝑖𝑛

1 (1− 2𝑎 cos𝜙−
𝜌−

),

𝐸
(0)𝑜𝑢𝑡
𝑧 = 𝐴𝑜𝑢𝑡

1 𝑎( cos𝜙+

𝜌+
+ cos𝜙−

𝜌−
),

(32)

𝐻(0)
𝑧 =

⎧⎪⎨⎪⎩
𝐻

(0)𝑖𝑛
𝑧 = 2𝐵𝑖𝑛

1 𝑎
sin𝜙−
𝜌−

,

𝐻
(0)𝑜𝑢𝑡
𝑧 = 𝐵𝑜𝑢𝑡

1 𝑎( sin𝜙+

𝜌+
+ sin𝜙−

𝜌−
).

(33)

Fig. 6. Reference systems

These functions coincide with superposition of zero terms of the Maclaurin expansions of the
cylindrical functions:

𝐾1(𝜌)𝑒
𝑖𝜙 =

1

𝜌
· 𝑒𝑖𝜙 +

1

2
𝜌 ln𝛼𝜌 · 𝑒𝑖𝜙 + . . . ,

𝑌1(𝜌)𝑒
𝑖𝜙 = − 2

𝜋

1

𝜌
· 𝑒𝑖𝜙 +

1

𝜋
𝜌 ln𝛼𝜌 · 𝑒𝑖𝜙 + . . . , (34)

𝐽0(𝜌) = 1− 𝜌2

4
+ . . .
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where 𝐾1(𝜌) is Macdonald function, 𝐽0(𝜌) and 𝑌1(𝜌) are Bessel functions of the first and second
kind respectively [17].

This fact plays a very important role in the following. Cylindrical functions (34) are solutions
to two-dimensional Helmholtz equations (6) and zero order terms of their Maclaurin expansions
are identical to solutions to Laplace equations (9). Therefore, first order terms in the expansions
of these cylindrical functions are the partial solutions of the Poisson equations (31). Then we
find with logarithmic accuracy

𝐸(1)
𝑧 =

⎧⎪⎨⎪⎩
𝐸

(1)𝑖𝑛
𝑧 = 𝐴𝑖𝑛

1 𝑎𝜒
2𝜌− ln𝜒𝜌− · cos𝜙−,

𝐸
(1)𝑜𝑢𝑡
𝑧 = 1

2𝐴
𝑜𝑢𝑡
1 𝑎𝜅2(𝜌− ln𝜅𝜌− · cos𝜙−+

+𝜌+ ln𝜅𝜌+ · cos𝜙+),

(35)

𝐻(1)
𝑧 =

⎧⎪⎨⎪⎩
𝐻

(1)𝑖𝑛
𝑧 = −𝐵𝑖𝑛

1 𝑎𝜒
2𝜌− ln𝜒𝜌− · sin𝜙−,

𝐻
(1)𝑜𝑢𝑡
𝑧 = 1

2𝐵
𝑜𝑢𝑡
1 𝑎𝜅2(𝜌− ln𝜅𝜌− · sin𝜙−+

+𝜌+ ln𝜅𝜌+ · sin𝜙+),

(36)

where
𝜒2 = 𝜀d𝑘

2 − 𝛽2, 𝜅2 = 𝛽2 − 𝜀g𝑘
2.

It is clear that the fields 𝐸𝑧 = 𝐸
(0)
𝑧 + 𝐸

(1)
𝑧 and 𝐻𝑧 = 𝐻

(0)
𝑧 + 𝐻

(1)
𝑧 satisfy the boundary

conditions at the metal interface. Thus we now need to impose the boundary conditions on
cylindrical surface.

We finally find with logarithmic accuracy

𝜅 ∼ 1

𝑎
· exp(−𝑒

𝜉0(𝜀d sinh 𝜉0 + 𝜀g cosh 𝜉0)

4𝜀g(𝜀d − 𝜀g)𝑘2𝑎2
) (37)
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